Programming the mechanics of cohesive fiber networks by compression

Bart E. Vos, Luka C. Liebrand, Mahsa Vahabi, Andreas Biebricher, Gijs J. L. Wuite, Erwin J. G. Peterman, Nicholas A. Kurniawan, Fred C. MacKintosh, Gijsje H. Koenderink

Research output: Contribution to JournalArticleAcademicpeer-review

9 Downloads (Pure)


Fibrous networks are ideal functional materials since they provide mechanical rigidity at low weight. Here, we demonstrate that fibrous networks of the blood clotting protein fibrin undergo a strong and irreversible increase in their mechanical rigidity in response to uniaxial compression. This rigidification can be precisely controlled by the level of applied compressive strain, providing a means to program the network rigidity without having to change its composition. To identify the underlying mechanism we measure single fiber–fiber interactions using optical tweezers. We further develop a minimal computational model of cohesive fiber networks that shows that stiffening arises due to the formation of new bonds in the compressed state, which develop tensile stress when the network is re-expanded. The model predicts that the network stiffness after a compression cycle obeys a power-law dependence on tensile stress, which we confirm experimentally. This finding provides new insights into how biological tissues can adapt themselves independently of any cellular processes, offering new perspectives to inspire the design of reprogrammable materials.
Original languageEnglish
Pages (from-to)8886-8893
Number of pages8
JournalSoft Matter
Issue number47
Early online date11 Oct 2017
Publication statusPublished - 21 Dec 2017


This work is part of the research program of the Netherlands Organisation for Scientific Research (NWO). G. H. K. acknowledges support from the Foundation for Fundamental Research on Matter (FOM Program grant no. 143). F. C. M. was supported in part by the National Science Foundation (Grant PHY-1427654).

FundersFunder number
National Science FoundationPHY-1427654
Directorate for Mathematical and Physical Sciences1427654
Stichting voor Fundamenteel Onderzoek der Materie143
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
National Science Foundation


    Dive into the research topics of 'Programming the mechanics of cohesive fiber networks by compression'. Together they form a unique fingerprint.

    Cite this