Quantification of input and compositional variations of calciturbidites in a Middle Triassoc basinal succession (Seceda, Dolomites, Southern Alps)

F. Maurer, J.G.G. Reijmer, W. Schlager

    Research output: Contribution to JournalArticleAcademicpeer-review


    Triassic calciturbidites were studied in a 100-m long core and nearby outcrops of the basinal Buchenstein Formation to determine composition and thickness variations. The quantity of recognized turbidite sediment relative to background sediment changes from 15% (by volume) in the lower part to 60% in the upper part, reflecting the steady progradation of nearby platforms. The composition of the sand fraction of 214 turbidites was point-counted in thin sections. Micrite peloids (average 23%) and lithoclasts (16%) are by far the most dominant constituents. They are interpreted as two different varieties of in-situ precipitated micrite (automicrite), which probably formed under the influence of microbes and constitute the principal building material of the adjacent platforms. Platform-derived skeletal grains amount to only 0.5%. Variations in turbidite composition were quantified using Spearman's rank correlation and cluster analysis. The most significant compositional variations seem to be related to hydrodynamic sorting in the turbidity currents and to the gradual shift from distal to more proximal turbidites in the core as the platforms prograded basinward. Cluster analysis of the 214 samples shows a major subdivision into micrite and sparite dominated turbidites. Clusters associated with micrite-dominated turbidites are enriched in Radiolaria and thin-shelled bivalves, whereas the clusters related to sparite-dominated turbidites show an abundance of lithoclasts. This subdivision seems strongly related to sorting effects in a turbidity current. Point-counting of turbidites in nearby outcrops revealed a lateral variation in composition. Proximal turbidites are sparite-dominated and enriched in lithoclasts, distal portions are chiefly micrite with an open-ocean biota (thin-shelled bivalves, Radiolaria). This differentiation resembles the vertical change in composition of thick turbidite beds, and is attributed to different settling rates of the various grains in the turbidity current. There is no indication that turbidite composition fluctuated significantly under the influence of sea-level fluctuations. This is not surprising because the dominant automicrite facies of the platforms only migrates laterally, but does not change much during sea-level cycles.
    Original languageEnglish
    Pages (from-to)593-609
    Number of pages17
    JournalInternational Journal of Earth Sciences
    Publication statusPublished - 2003


    Dive into the research topics of 'Quantification of input and compositional variations of calciturbidites in a Middle Triassoc basinal succession (Seceda, Dolomites, Southern Alps)'. Together they form a unique fingerprint.

    Cite this