Rabinowitz Floer homology for tentacular Hamiltonians

F Pasquotto, R.C.A.M. Van der vorst, Jagna Wisniewska*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

This paper extends the definition of Rabinowitz Floer homology to non-compact hypersurfaces. We present a general framework for the construction of Rabinowitz Floer homology in the non-compact setting under suitable compactness assumptions on the periodic orbits and the moduli spaces of Floer trajectories. We introduce a class of hypersurfaces arising as the level sets of specific Hamiltonians: strongly tentacular Hamiltonians for which the compactness conditions are satisfied, cf. [ 21], thus enabling us to define the Rabinowitz Floer homology for this class. Rabinowitz Floer homology in turn serves as a tool to address the Weinstein conjecture and establish existence of closed characteristics for non-compact contact manifolds.
Original languageEnglish
Pages (from-to)2027-2085
Number of pages59
JournalInternational Mathematics Research Notices
Volume2022
Issue number3
Early online date23 Jun 2020
DOIs
Publication statusPublished - Feb 2022

Bibliographical note

Funding Information:
This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) [grant 613.001.111] Periodic motions on non-compact energy surfaces; and by the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF) [grant 200021_182564 to J.W.] Periodic orbits on non-compact hypersurfaces.

Publisher Copyright:
© The Author(s) 2020.

Funding

This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) [grant 613.001.111] Periodic motions on non-compact energy surfaces; and by the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF) [grant 200021_182564 to J.W.] Periodic orbits on non-compact hypersurfaces.

Fingerprint

Dive into the research topics of 'Rabinowitz Floer homology for tentacular Hamiltonians'. Together they form a unique fingerprint.

Cite this