Raman Spectroscopic Techniques for Planetary Exploration: Detecting Microorganisms through Minerals

M.F.C. Verkaaik, J.H. Hooijschuur, G.R. Davies, F. Ariese

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Raman spectroscopy can provide highly specific chemical fingerprints of inorganic and organic materials and is therefore expected to play a significant role in interplanetary missions, especially for the search for life elsewhere in our solar system. A major challenge will be the unambiguous detection of low levels of biomarkers on a mineral background. In addition, these biomarkers may not be present at the surface but rather inside or underneath minerals. Strong scattering may prevent focusing deeper into the sample. In this paper, we report the detection of carotenoid-containing microorganisms behind mineral layers using time-resolved Raman spectroscopy (TRRS). Two extremophiles, the bacterium Deinococcus radiodurans and the cyanobacterium Chroococcidiopsis, were detected through translucent and transparent minerals using 440nm excitation under resonance conditions to selectively enhance the detection of carotenoids. Using 3ps laser pulses and a 250ps gated intensified CCD camera provided depth selectivity for the subsurface microorganisms over the mineral surface layer and in addition lowered the contribution of the fluorescent background. Raman spectra of both organisms could be detected through 5mm of translucent calcite or 20mm of transparent halite. Multilayered mineral samples were used to further test the applied method. A separate tunable laser setup for resonance Raman and a commercial confocal Raman microscope, both with continuous (non-gated) detection, were used for comparison. This study demonstrates the capabilities of TRRS for the depth-selective analysis through scattering samples, which could be used in future planetary exploration to detect microorganisms or biomarkers within or behind minerals. Key Words: Time-resolved Raman spectroscopy - Resonance Raman - Deinococcus radiodurans - Chroococcidiopsis - Extremophiles - Mineral inclusions. Astrobiology 15, 697-707.
Original languageEnglish
Pages (from-to)697-707
JournalAstrobiology
Volume15
Issue number8
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Raman Spectroscopic Techniques for Planetary Exploration: Detecting Microorganisms through Minerals'. Together they form a unique fingerprint.

Cite this