TY - JOUR
T1 - Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures
AU - Gu, Z.
AU - Witschas, B.
AU - van der Water, W.
AU - Ubachs, W.M.G.
PY - 2013
Y1 - 2013
N2 - Rayleigh-Brillouin (RB) scattering profiles for air have been recorded for the temperature range from 255 to 340 K and the pressure range from 640 to 3300 mbar, covering the conditions relevant for the Earth's atmosphere and for planned atmospheric light detection and ranging (LIDAR) missions. The measurements performed at a wavelength of λ = 366.8 nm detect spontaneous RB scattering at a 90° scattering angle from a sensitive intracavity setup, delivering scattering profiles at a 1% rms noise level or better. The experimental results have been compared to a kinetic line-shape model, the acclaimed Tenti S6 model, considered to be most appropriate for such conditions, under the assumption that air can be treated as an effective single-component gas with temperature-scaled values for the relevant macroscopic transport coefficients. The elusive transport coefficient, the bulk viscosity b, is effectively derived by a comparing the measurements to the model, yielding an increased trend from 1.0 to 2.5 × 10-5 kg ·m -1 · s-1 for the temperature interval. The calculated (Tenti S6) line shapes are consistent with experimental data at the level of 2%, meeting the requirements for the future RB-scattering LIDAR missions in the Earth's atmosphere. However, the systematic 2% deviation may imply that the model has a limit to describe the finest details of RB scattering in air. Finally, it is demonstrated that the RB scattering data in combination with the Tenti S6 model can be used to retrieve the actual gas temperatures. © 2013 Optical Society of America.
AB - Rayleigh-Brillouin (RB) scattering profiles for air have been recorded for the temperature range from 255 to 340 K and the pressure range from 640 to 3300 mbar, covering the conditions relevant for the Earth's atmosphere and for planned atmospheric light detection and ranging (LIDAR) missions. The measurements performed at a wavelength of λ = 366.8 nm detect spontaneous RB scattering at a 90° scattering angle from a sensitive intracavity setup, delivering scattering profiles at a 1% rms noise level or better. The experimental results have been compared to a kinetic line-shape model, the acclaimed Tenti S6 model, considered to be most appropriate for such conditions, under the assumption that air can be treated as an effective single-component gas with temperature-scaled values for the relevant macroscopic transport coefficients. The elusive transport coefficient, the bulk viscosity b, is effectively derived by a comparing the measurements to the model, yielding an increased trend from 1.0 to 2.5 × 10-5 kg ·m -1 · s-1 for the temperature interval. The calculated (Tenti S6) line shapes are consistent with experimental data at the level of 2%, meeting the requirements for the future RB-scattering LIDAR missions in the Earth's atmosphere. However, the systematic 2% deviation may imply that the model has a limit to describe the finest details of RB scattering in air. Finally, it is demonstrated that the RB scattering data in combination with the Tenti S6 model can be used to retrieve the actual gas temperatures. © 2013 Optical Society of America.
U2 - 10.1364/AO.52.004640
DO - 10.1364/AO.52.004640
M3 - Article
SN - 1559-128X
VL - 52
SP - 4640
EP - 4651
JO - Applied Optics
JF - Applied Optics
IS - 19
ER -