Abstract
The current geochronological state-of-the-art for applying the radiocarbon (14C) method to deep-sea sediment archives lacks key information on sediment bioturbation. Here, we apply a sediment accumulation model that simulates the sedimentation and bioturbation of millions of foraminifera, whereby realistic 14C activities (i.e. from a 14C calibration curve) are assigned to each single foraminifera based on its simulation timestep. We find that the normal distribution of 14C age typically used to represent discrete-depth sediment intervals (based on the reported laboratory 14C age and measurement error) is unlikely to be a faithful reflection of the actual 14C age distribution for a specific depth interval. We also find that this deviation from the actual 14C age distribution is greatly amplified during the calibration process. We find a systematic underestimation of total geochronological error in many cases (by up to thousands of years), as well as the generation of age-depth artefacts in downcore calibrated median age. Specifically, we find that even in the case of perfect simulated sediment archive scenarios, whereby sediment accumulation rate (SAR), bioturbation depth, reservoir age and species abundance are all kept constant, the 14C dating and calibration process generates temporally dynamic median age-depth artefacts, on the order of hundreds of years – even in the case of high SAR scenarios of 40 cm ka−1 and 60 cm ka−1. Such age-depth artefacts can be especially pronounced during periods corresponding to dynamic changes in the Earth's Δ14C, where single foraminifera of varying 14C activity can be incorporated into single discrete-depth sediment intervals. In certain SAR scenarios, a discrete depth’s true median age can consistently fall outside the 95.45 % calibrated age range predicted by the 14C dating and calibration process. Our findings suggest the possibility of 14C-derived age-depth artefacts in the literature: since age-depth artefacts are likely to coincide with large-scale changes in global Δ14C, which themselves can coincide with large-scale changes in global climate (such as the last deglaciation), 14C-derived age-depth artefacts may have been previously been (partially) misinterpreted as due to changes in global climate. Our study highlights the need for the development of improved deep-sea sediment 14C calibration techniques that include an a priori representation of bioturbation for multi-specimen samples.
Original language | English |
---|---|
Journal | Geochronology |
DOIs | |
Publication status | Submitted - 2019 |
Fingerprint
Dive into the research topics of 'Re-evaluating 14C dating accuracy in deep-sea sediment archives'. Together they form a unique fingerprint.Datasets
-
Model runs generated by publication "Re-evaluating 14 C dating accuracy in deep-sea sediment archives"
Lougheed, B. C. (Contributor), Ascough, P. (Contributor), Dolman, A. M. (Contributor), Löwemark, L. (Contributor) & Metcalfe, B. (Contributor), Zenodo, 2020
DOI: 10.5281/zenodo.3735135, https://zenodo.org/record/3735135
Dataset / Software: Dataset