Real-time eye motion compensation for OCT imaging with tracking SLO

Kari V. Vienola, Boy Braaf, Christy K. Sheehy, Qiang Yang, Pavan Tiruveedhula, David W. Arathorn, Johannes F. de Boer, Austin Roorda

Research output: Contribution to JournalArticleAcademicpeer-review

145 Downloads (Pure)

Abstract

Fixational eye movements remain a major cause of artifacts in optical coherence tomography (OCT) images despite the increases in acquisition speeds. One approach to eliminate the eye motion is to stabilize the ophthalmic imaging system in real-time. This paper describes and quantifies the performance of a tracking OCT system, which combines a phase-stabilized optical frequency domain imaging (OFDI) system and an eye tracking scanning laser ophthalmoscope (TSLO). We show that active eye tracking minimizes artifacts caused by eye drift and micro saccades. The remaining tracking lock failures caused by blinks and large saccades generate a trigger signal which signals the OCT system to rescan corrupted B-scans. Residual motion artifacts in the OCT B-scans are reduced to 0.32 minutes of arc (~1.6 μm) in an in vivo human eye enabling acquisition of high quality images from the optic nerve head and lamina cribrosa pore structure. © 2012 Optical Society of America.
Original languageEnglish
Pages (from-to)2950-2963
Number of pages14
JournalBiomedical Optics Express
Volume3
Issue number11
DOIs
Publication statusPublished - 1 Nov 2012

Fingerprint

Dive into the research topics of 'Real-time eye motion compensation for OCT imaging with tracking SLO'. Together they form a unique fingerprint.

Cite this