Reproducibility of hand-held ankle dynamometry to measure altered ankle moment-angle characteristics in children with spastic cerebral palsy

M.R. Benard, R.T. Jaspers, P.A.J.B.M. Huijing, J.G.S.J.S. Becher, J. Harlaar

    Research output: Contribution to JournalArticle

    Abstract

    Background: In children with spastic cerebral palsy, the range of motion of the ankle joint is often limited. Measurement of range of motion may be hampered by a non-rigid foot deformity. We constructed a hand-held instrument which allows measurements of static ankle angle and moment in children with cerebral palsy while correcting for foot deformity. This study aimed to test the reproducibility of the instrument and to use it for measuring ankle moment-angle characteristics in individual children who are typically developing and children with cerebral palsy. Methods: Ankle angles and moments were measured at five standardized positions in ten children who are typically developing and ten children with cerebral palsy. The intraclass correlation coefficient was calculated for test-retest reliability. For precision, the standard error of measurement and smallest detectable difference were determined. The ankle range of motion and the slope of the moment-angle curve were determined, both towards plantar flexion and dorsiflexion. Findings: The reproducibility study revealed a high reliability of the dynamometer at 5 repetitions (> 0.97). Precision lies within 5° for angle measurements and within 0.2 Nm for moment measurements. In the children with cerebral palsy, the range of motion towards dorsiflexion was 18° lower and the slope of the moment-angle curve towards dorsiflexion was substantially higher. Interpretation: We developed a hand-held dynamometer which allows reliable and precise measurements of static ankle angle and moment in children with cerebral palsy. The hand-held dynamometer allows corrections of foot deformities and is qualified to reproducibly evaluate moment-angle characteristics in a clinical context. © 2010 Elsevier B.V. All rights reserved.
    Original languageEnglish
    Pages (from-to)802-808
    JournalClinical Biomechanics
    Volume25
    Issue number8
    DOIs
    Publication statusPublished - 2010

      Fingerprint

    Cite this