TY - JOUR
T1 - Resonant excitation of trapped molecules in a molecular synchrotron
AU - Zieger, P.C.
AU - Eyles, C.J.
AU - Meijer, G.
AU - Bethlem, H.L.
PY - 2013
Y1 - 2013
N2 - We characterize a synchrotron for polar molecules that consists of forty straight hexapoles arranged in a circle. By modulating either the voltages or the duration of the high-voltage pulses that are applied to the hexapoles, we shake the transverse and longitudinal well. If the frequency of the modulation matches a characteristic frequency of a stored molecule, the amplitude of the motion is resonantly excited, leading to a decrease in the number of molecules that are stored. From this, we determine the longitudinal, vertical, and radial frequencies that characterize the motion of the molecules inside the synchrotron and obtain knowledge about the couplings between the longitidinal and transverse motion. The measured frequencies are in good agreement with those obtained from three-dimensional trajectory calculations. © 2013 American Physical Society.
AB - We characterize a synchrotron for polar molecules that consists of forty straight hexapoles arranged in a circle. By modulating either the voltages or the duration of the high-voltage pulses that are applied to the hexapoles, we shake the transverse and longitudinal well. If the frequency of the modulation matches a characteristic frequency of a stored molecule, the amplitude of the motion is resonantly excited, leading to a decrease in the number of molecules that are stored. From this, we determine the longitudinal, vertical, and radial frequencies that characterize the motion of the molecules inside the synchrotron and obtain knowledge about the couplings between the longitidinal and transverse motion. The measured frequencies are in good agreement with those obtained from three-dimensional trajectory calculations. © 2013 American Physical Society.
U2 - 10.1103/PhysRevA.87.043425
DO - 10.1103/PhysRevA.87.043425
M3 - Article
VL - 87
JO - Physical Review A. Atomic, Molecular and Optical Physics
JF - Physical Review A. Atomic, Molecular and Optical Physics
SN - 1050-2947
IS - 4
M1 - 043425
ER -