TY - JOUR
T1 - Rigorous numerics for NLS
T2 - Bound states, spectra, and controllability
AU - Castelli, Roberto
AU - Teismann, Holger
PY - 2016/11/1
Y1 - 2016/11/1
N2 - In this paper it is demonstrated how rigorous numerics may be applied to the one-dimensional nonlinear Schrödinger equation (NLS); specifically, to determining bound-state solutions and establishing certain spectral properties of the linearization. Since the results are rigorous, they can be used to complete a recent analytical proof (Beauchard et al., 2015) of the local exact controllability of NLS.
AB - In this paper it is demonstrated how rigorous numerics may be applied to the one-dimensional nonlinear Schrödinger equation (NLS); specifically, to determining bound-state solutions and establishing certain spectral properties of the linearization. Since the results are rigorous, they can be used to complete a recent analytical proof (Beauchard et al., 2015) of the local exact controllability of NLS.
KW - BEC
KW - Controllability of PDEs
KW - Radii polynomials
KW - Rigorous numerics
KW - Spectral analysis
UR - http://www.scopus.com/inward/record.url?scp=84956854710&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84956854710&partnerID=8YFLogxK
U2 - 10.1016/j.physd.2016.01.005
DO - 10.1016/j.physd.2016.01.005
M3 - Article
AN - SCOPUS:84956854710
SN - 0167-2789
VL - 334
SP - 158
EP - 173
JO - Physica D. Nonlinear Phenomena
JF - Physica D. Nonlinear Phenomena
ER -