Abstract
Most of the highest priority objectives for lunar science and exploration (e.g.; NRC, 2007) require sample return. Studies of the best places to conduct that work have identified Schrödinger basin as a geologically rich area, able to address a significant number of these scientific concepts. In this study traverses were designed for a robotic mission within previously identified crewed landing sites in Schrödinger basin. Traverse routes and sampling locations were identified using LROC imagery and LOLA topography data, combined with a theoretical rover travel and operations model. The findings of this investigation highlight the need to consider increased rover capabilities. A significant number of samples that can address many of the NRC (2007) scientific goals can be returned in a robotic mission during one period of lunar illumination (∼14 Earth days) using specifications from previous lunar rovers.
Original language | English |
---|---|
Pages (from-to) | 1241-1254 |
Journal | Advances in Space Research |
Volume | 55 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2015 |