TY - JOUR
T1 - S2S reboot
T2 - An argument for greater inclusion of machine learning in subseasonal to seasonal forecasts
AU - Cohen, Judah
AU - Coumou, Dim
AU - Hwang, Jessica
AU - Mackey, Lester
AU - Orenstein, Paulo
AU - Totz, Sonja
AU - Tziperman, Eli
PY - 2019/3
Y1 - 2019/3
N2 - The discipline of seasonal climate prediction began as an exercise in simple statistical techniques. However, today the large government forecast centers almost exclusively rely on complex fully coupled dynamical forecast systems for their subseasonal to seasonal (S2S) predictions while statistical techniques are mostly neglected and those techniques still in use have not been updated in decades. In this Opinion Article, we argue that new statistical techniques mostly developed outside the field of climate science, collectively referred to as machine learning, can be adopted by climate forecasters to increase the accuracy of S2S predictions. We present an example of where unsupervised learning demonstrates higher accuracy in a seasonal prediction than the state-of-the-art dynamical systems. We also summarize some relevant machine learning methods that are most applicable to climate prediction. Finally, we show by comparing real-time dynamical model forecasts with observations from winter 2017/2018 that dynamical model forecasts are almost entirely insensitive to polar vortex (PV) variability and the impact on sensible weather. Instead, statistical forecasts more accurately predicted the resultant sensible weather from a mid-winter PV disruption than the dynamical forecasts. The important implication from the poor dynamical forecasts is that if Arctic change influences mid-latitude weather through PV variability, then the ability of dynamical models to demonstrate the existence of such a pathway is compromised. We conclude by suggesting that S2S prediction will be most beneficial to the public by incorporating mixed or a hybrid of dynamical forecasts and updated statistical techniques such as machine learning. This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models.
AB - The discipline of seasonal climate prediction began as an exercise in simple statistical techniques. However, today the large government forecast centers almost exclusively rely on complex fully coupled dynamical forecast systems for their subseasonal to seasonal (S2S) predictions while statistical techniques are mostly neglected and those techniques still in use have not been updated in decades. In this Opinion Article, we argue that new statistical techniques mostly developed outside the field of climate science, collectively referred to as machine learning, can be adopted by climate forecasters to increase the accuracy of S2S predictions. We present an example of where unsupervised learning demonstrates higher accuracy in a seasonal prediction than the state-of-the-art dynamical systems. We also summarize some relevant machine learning methods that are most applicable to climate prediction. Finally, we show by comparing real-time dynamical model forecasts with observations from winter 2017/2018 that dynamical model forecasts are almost entirely insensitive to polar vortex (PV) variability and the impact on sensible weather. Instead, statistical forecasts more accurately predicted the resultant sensible weather from a mid-winter PV disruption than the dynamical forecasts. The important implication from the poor dynamical forecasts is that if Arctic change influences mid-latitude weather through PV variability, then the ability of dynamical models to demonstrate the existence of such a pathway is compromised. We conclude by suggesting that S2S prediction will be most beneficial to the public by incorporating mixed or a hybrid of dynamical forecasts and updated statistical techniques such as machine learning. This article is categorized under: Climate Models and Modeling > Knowledge Generation with Models.
KW - climate prediction
KW - machine learning
KW - polar vortex
KW - unsupervised learning
UR - http://www.scopus.com/inward/record.url?scp=85058864589&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85058864589&partnerID=8YFLogxK
U2 - 10.1002/wcc.567
DO - 10.1002/wcc.567
M3 - Review article
SN - 1757-7799
VL - 10
SP - 1
EP - 15
JO - Wiley Interdisciplinary Reviews. Climate Change
JF - Wiley Interdisciplinary Reviews. Climate Change
IS - 2
M1 - e00567
ER -