Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

LIGO Scientific Collaboration and Virgo Collaboration

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz.

Original languageEnglish
Article number201102
Pages (from-to)1-13
Number of pages13
JournalPhysical Review Letters
Volume120
Issue number20
DOIs
Publication statusPublished - 16 May 2018

Funding

The direct measurement of gravitational-wave polarizations may open the door to powerful new tests of gravity. Such measurements largely depend only on the geometry of a gravitational wave’s strain and its direction of propagation, not on the details of any specific theory of gravity. Recently, the Advanced LIGO-Virgo observation of the binary black hole merger GW170814 has enabled the first direct study of gravitational-wave polarizations [4,15] . While LIGO and Virgo are limited in their ability to discern the polarization of gravitational-wave transients, the future construction of additional detectors, like KAGRA [76,77] and LIGO-India [78] , will help to break existing degeneracies and allow for increasingly precise polarization measurements. Long-duration signals offer further opportunities to study gravitational-wave polarizations. Detections of continuous sources like rotating neutron stars [44,45] and the stochastic background [42] will offer the ability to directly measure and/or constrain gravitational-wave polarizations, even in the absence of additional detectors. In this Letter, we have conducted a search for a generically polarized stochastic background of gravitational waves using data from Advanced LIGO’s O1 observing run. Although we find no evidence for the presence of a background (of any polarization), we have succeeded in placing the first direct upper limits (listed in Table  I ) on the contributions of vector and scalar modes to the stochastic background. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen, Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Sciences and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen, Germany for provision of computational resources. [1] 1 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 061102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102 [2] 2 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 241103 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241103 [3] 3 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 221101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.221101 [4] 4 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 119 , 141101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.141101 [5] 5 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 119 , 161101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101 [6] 6 F. Acernese , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [7] 7 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 131103 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.131103 [8] 8 F. Acernese , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [9] 9 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 221101 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.221101 [10] 10 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. X 6 , 041015 ( 2016 ). PRXHAE 2160-3308 10.1103/PhysRevX.6.041015 [11] 11 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Astrophys. J. 848 , L13 ( 2017 ). ASJOAB 1538-4357 10.3847/2041-8213/aa920c [12] 12 D. M. Eardley , D. L. Lee , A. P. Lightman , R. V. Wagoner , and C. M. Will , Phys. Rev. Lett. 30 , 884 ( 1973 ). PRLTAO 0031-9007 10.1103/PhysRevLett.30.884 [13] 13 D. M. Eardley , D. L. Lee , and A. P. Lightman , Phys. Rev. D 8 , 3308 ( 1973 ). PRVDAQ 0556-2821 10.1103/PhysRevD.8.3308 [14] 14 C. M. Will , Living Rev. Relativity 17 , 4 ( 2014 ). 1433-8351 10.12942/lrr-2014-4 [15] 15 M. Isi and A. J. Weinstein , arXiv:1710.03794 . [16] 16 K. Chatziioannou , N. Yunes , and N. Cornish , Phys. Rev. D 86 , 022004 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.86.022004 [17] 17 E. Berti , Classical Quantum Gravity 32 , 243001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/24/243001 [18] 18 P. A. Rosado , Phys. Rev. D 84 , 084004 ( 2011 ). PRVDAQ 1550-7998 10.1103/PhysRevD.84.084004 [19] 19 X.-J. Zhu , E. Howell , T. Regimbau , D. Blair , and Z.-H. Zhu , Astrophys. J. 739 , 86 ( 2011 ). ASJOAB 1538-4357 10.1088/0004-637X/739/2/86 [20] 20 C. Wu , V. Mandic , and T. Regimbau , Phys. Rev. D 85 , 104024 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.85.104024 [21] 21 X.-J. Zhu , E. J. Howell , D. G. Blair , and Z.-H. Zhu , Mon. Not. R. Astron. Soc. 431 , 882 ( 2013 ). MNRAA4 0035-8711 10.1093/mnras/stt207 [22] 22 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 131102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.131102 [23] 23 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 120 , 091101 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.091101 [24] 24 A. Buonanno , G. Sigl , G. G. Raffelt , H.-T. Janka , and E. Müller , Phys. Rev. D 72 , 084001 ( 2005 ). PRVDAQ 1550-7998 10.1103/PhysRevD.72.084001 [25] 25 X.-J. Zhu , E. Howell , and D. Blair , Mon. Not. R. Astron. Soc. Lett. 409 , L132 ( 2010 ). MNRAB5 1745-3925 10.1111/j.1745-3933.2010.00965.x [26] 26 K. Crocker , V. Mandic , T. Regimbau , K. Belczynski , W. Gladysz , K. Olive , T. Prestegard , and E. Vangioni , Phys. Rev. D 92 , 063005 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.92.063005 [27] 27 P. A. Rosado , Phys. Rev. D 86 , 104007 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.86.104007 [28] 28 C.-J. Wu , V. Mandic , and T. Regimbau , Phys. Rev. D 87 , 042002 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.87.042002 [29] 29 D. Talukder , E. Thrane , S. Bose , and T. Regimbau , Phys. Rev. D 89 , 123008 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.123008 [30] 30 S. Ölmez , V. Mandic , and X. Siemens , Phys. Rev. D 81 , 104028 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.81.104028 [31] 31 J. Aasi , Phys. Rev. Lett. 112 , 131101 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.112.131101 [32] 32 M. Maggiore , Phys. Rep. 331 , 283 ( 2000 ). PRPLCM 0370-1573 10.1016/S0370-1573(99)00102-7 [33] 33 J. T. Giblin and E. Thrane , Phys. Rev. D 90 , 107502 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.90.107502 [34] 34 R. Easther , J. T. Giblin , and E. A. Lim , Phys. Rev. Lett. 99 , 221301 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.99.221301 [35] 35 J. L. Cook and L. Sorbo , Phys. Rev. D 85 , 023534 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.85.023534 [36] 36 C. Caprini , R. Durrer , and G. Servant , Phys. Rev. D 77 , 124015 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.77.124015 [37] 37 C. Caprini , R. Durrer , and G. Servant , J. Cosmol. Astropart. Phys. 12 ( 2009 ) 024 . JCAPBP 1475-7516 10.1088/1475-7516/2009/12/024 [38] 38 A. Lopez and K. Freese , J. Cosmol. Astropart. Phys. 1 ( 2015 ) 037 . JCAPBP 1475-7516 10.1088/1475-7516/2015/01/037 [39] 39 A. Nishizawa , A. Taruya , K. Hayama , S. Kawamura , and M.-a. Sakagami , Phys. Rev. D 79 , 082002 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.79.082002 [40] 40 A. Nishizawa , A. Taruya , and S. Kawamura , Phys. Rev. D 81 , 104043 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.81.104043 [41] 41 A. Nishizawa and K. Hayama , Phys. Rev. D 88 , 064005 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.064005 [42] 42 T. Callister , A. S. Biscoveanu , N. Christensen , M. Isi , A. Matas , O. Minazzoli , T. Regimbau , M. Sakellariadou , J. Tasson , and E.Thrane , Phys. Rev. X 7 , 041058 ( 2017 ). PRXHAE 2160-3308 10.1103/PhysRevX.7.041058 [43] 43 M. Isi , A. J. Weinstein , C. Mead , and M. Pitkin , Phys. Rev. D 91 , 082002 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.082002 [44] 44 M. Isi , M. Pitkin , and A. J. Weinstein , Phys. Rev. D 96 , 042001 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.042001 [45] 45 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 120 , 031104 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.031104 [46] 46 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 121101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.121101 [47] 47 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 121102 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.121102 [48] 48 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.201102 for an expanded discussion of hypothesis testing, calibration uncertainties, and complete parameter estimation results. [49] 49 J. Aasi , Phys. Rev. Lett. 113 , 231101 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.113.231101 [50] 50 P. D. Welch , IEEE Trans. Audio Electroacoust. 15 , 70 ( 1967 ). ITADAS 0018-9278 10.1109/TAU.1967.1161901 [51] 51 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 121101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.121101 [52] 52 E. Thrane , N. Christensen , and R. M. S. Schofield , Phys. Rev. D 87 , 123009 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.87.123009 [53] 53 E. Thrane , N. Christensen , R. M. S. Schofield , and A. Effler , Phys. Rev. D 90 , 023013 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.90.023013 [54] 54 Y. Himemoto and A. Taruya , Phys. Rev. D 96 , 022004 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.022004 [55] 55 C. Cahillane , Phys. Rev. D 96 , 102001 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.102001 [56] 56 J. T. Whelan , E. L. Robinson , J. D. Romano , and E. H. Thrane , J. Phys. Conf. Ser. 484 , 012027 ( 2014 ). JPCSDZ 1742-6588 10.1088/1742-6596/484/1/012027 [57] 57 R. Jackiw and S.-Y. Pi , Phys. Rev. D 68 , 104012 ( 2003 ). PRVDAQ 0556-2821 10.1103/PhysRevD.68.104012 [58] 58 S. Alexander , L. S. Finn , and N. Yunes , Phys. Rev. D 78 , 066005 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.78.066005 [59] 59 S. Alexander and N. Yunes , Phys. Rep. 480 , 1 ( 2009 ). PRPLCM 0370-1573 10.1016/j.physrep.2009.07.002 [60] 60 V. A. Kostelecký , Phys. Rev. D 69 , 105009 ( 2004 ). PRVDAQ 0556-2821 10.1103/PhysRevD.69.105009 [61] 61 V. A. Kostelecký and M. Mewes , Phys. Lett. B 757 , 510 ( 2016 ). PYLBAJ 0370-2693 10.1016/j.physletb.2016.04.040 [62] 62 B. Allen and J. D. Romano , Phys. Rev. D 59 , 102001 ( 1999 ). PRVDAQ 0556-2821 10.1103/PhysRevD.59.102001 [63] 63 N. Christensen , Phys. Rev. D 46 , 5250 ( 1992 ). PRVDAQ 0556-2821 10.1103/PhysRevD.46.5250 [64] 64 J. D. Romano and N. J. Cornish , Living Rev. Relativity 20 , 2 ( 2017 ). 1433-8351 10.1007/s41114-017-0004-1 [65] 65 P. A. R. Ade , Astron. Astrophys. 594 , A13 ( 2016 ). AAEJAF 0004-6361 10.1051/0004-6361/201525830 [66] 66 R. A. Isaacson , Phys. Rev. 166 , 1272 ( 1968 ). PHRVAO 0031-899X 10.1103/PhysRev.166.1272 [67] 67 M. Isi and L. Stein , LIGO Document No. P1700234 (to be published). [68] 68 D. Meacher , M. Coughlin , S. Morris , T. Regimbau , N. Christensen , S. Kandhasamy , V. Mandic , J. D. Romano , and E. Thrane , Phys. Rev. D 92 , 063002 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.92.063002 [69] 69 J. Buchner , A. Georgakakis , K. Nandra , L. Hsu , C. Rangel , M. Brightman , A. Merloni , M. Salvato , J. Donley , and D. Kocevski , Astron. Astrophys. 564 , A125 ( 2014 ). AAEJAF 0004-6361 10.1051/0004-6361/201322971 [70] 70 F. Feroz and M. P. Hobson , Mon. Not. R. Astron. Soc. 384 , 449 ( 2008 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2007.12353.x [71] 71 F. Feroz , M. P. Hobson , and M. Bridges , Mon. Not. R. Astron. Soc. 398 , 1601 ( 2009 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2009.14548.x [72] 72 F. Feroz , M. P. Hobson , E. Cameron , and A. N. Pettitt , arXiv:1306.2144 . [73] 73 J. Skilling , AIP Conf. Proc. 735 , 395 ( 2004 ). APCPCS 0094-243X 10.1063/1.1835238 [74] 74 J. Skilling , Bayesian Analysis 1 , 833 ( 2006 ). 10.1214/06-BA127 [75] 75 T. Callister , L. Sammut , S. Qiu , I. Mandel , and E. Thrane , Phys. Rev. X 6 , 031018 ( 2016 ). PRXHAE 2160-3308 10.1103/PhysRevX.6.031018 [76] 76 Y. Aso , Y. Michimura , K. Somiya , M. Ando , O. Miyakawa , T. Sekiguchi , D. Tatsumi , and H. Yamamoto , Phys. Rev. D 88 , 043007 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.043007 [77] 77 T. Akutsu , Prog. Theor. Exp. Phys. 2018 , 013F01 ( 2018 ). PTEPCR 2050-3911 10.1093/ptep/ptx180 [78] 78 B. Iyer , LIGO-India Tech. Report No.  LIGO-M1100296 ( 2011 ), https://dcc.ligo.org/LIGO-M1100296/public .

FundersFunder number
Not addedST/N005422/1, ST/M005844/1, ST/K000845/1, ST/N000633/1, ST/N000072/1, ST/P000258/1, ST/H002006/1, ST/J00166X/1, ST/N005430/1
National Science Foundation1708081, 1607585, 1700765, 1707835, 1404139
Directorate for Mathematical and Physical Sciences
Kavli Foundation
National Kidney Foundation of Iowa
Canadian Institute for Advanced Research
Natural Sciences and Engineering Research Council of Canada
Ontario Ministry of Economic Development and Innovation
Science and Technology Facilities CouncilPPA/G/S/2002/00652, Gravitational Waves, ST/I006269/1
Leverhulme Trust
Royal Society
Scottish Funding Council
Scottish Universities Physics Alliance
European Commission
Australian Research Council
Department of Science and Technology, Ministry of Science and Technology, India
Council of Scientific and Industrial Research, India
Japan Society for the Promotion of Science18H03698
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung159922
National Natural Science Foundation of China
Science and Engineering Research Board
Russian Foundation for Basic Research
Research Grants Council, University Grants Committee
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Generalitat Valenciana
Hungarian Scientific Research Fund
National Research Foundation of Korea
Instituto Nazionale di Fisica Nucleare
Narodowe Centrum Nauki
Ministry of Human Resource Development
Ministry of Science and Technology, Taiwan
Centre National de la Recherche Scientifique
Russian Science Foundation
European Regional Development Fund
Universitat de les Illes Balears
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Agencia Estatal de Investigación
Ministério da Ciência, Tecnologia, Inovações e Comunicações
Istituto Nazionale di Fisica Nucleare
ICTP South American Institute for Fundamental Research

    Fingerprint

    Dive into the research topics of 'Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background'. Together they form a unique fingerprint.

    Cite this