Abstract
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz.
Original language | English |
---|---|
Article number | 201102 |
Pages (from-to) | 1-13 |
Number of pages | 13 |
Journal | Physical Review Letters |
Volume | 120 |
Issue number | 20 |
DOIs | |
Publication status | Published - 16 May 2018 |
Funding
The direct measurement of gravitational-wave polarizations may open the door to powerful new tests of gravity. Such measurements largely depend only on the geometry of a gravitational wave’s strain and its direction of propagation, not on the details of any specific theory of gravity. Recently, the Advanced LIGO-Virgo observation of the binary black hole merger GW170814 has enabled the first direct study of gravitational-wave polarizations [4,15] . While LIGO and Virgo are limited in their ability to discern the polarization of gravitational-wave transients, the future construction of additional detectors, like KAGRA [76,77] and LIGO-India [78] , will help to break existing degeneracies and allow for increasingly precise polarization measurements. Long-duration signals offer further opportunities to study gravitational-wave polarizations. Detections of continuous sources like rotating neutron stars [44,45] and the stochastic background [42] will offer the ability to directly measure and/or constrain gravitational-wave polarizations, even in the absence of additional detectors. In this Letter, we have conducted a search for a generically polarized stochastic background of gravitational waves using data from Advanced LIGO’s O1 observing run. Although we find no evidence for the presence of a background (of any polarization), we have succeeded in placing the first direct upper limits (listed in Table I ) on the contributions of vector and scalar modes to the stochastic background. The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen, Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Sciences and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen, Germany for provision of computational resources. [1] 1 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 061102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.061102 [2] 2 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 241103 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.241103 [3] 3 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 221101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.221101 [4] 4 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 119 , 141101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.141101 [5] 5 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 119 , 161101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.119.161101 [6] 6 F. Acernese , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [7] 7 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 131103 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.131103 [8] 8 F. Acernese , Classical Quantum Gravity 32 , 024001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/2/024001 [9] 9 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 221101 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.221101 [10] 10 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. X 6 , 041015 ( 2016 ). PRXHAE 2160-3308 10.1103/PhysRevX.6.041015 [11] 11 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Astrophys. J. 848 , L13 ( 2017 ). ASJOAB 1538-4357 10.3847/2041-8213/aa920c [12] 12 D. M. Eardley , D. L. Lee , A. P. Lightman , R. V. Wagoner , and C. M. Will , Phys. Rev. Lett. 30 , 884 ( 1973 ). PRLTAO 0031-9007 10.1103/PhysRevLett.30.884 [13] 13 D. M. Eardley , D. L. Lee , and A. P. Lightman , Phys. Rev. D 8 , 3308 ( 1973 ). PRVDAQ 0556-2821 10.1103/PhysRevD.8.3308 [14] 14 C. M. Will , Living Rev. Relativity 17 , 4 ( 2014 ). 1433-8351 10.12942/lrr-2014-4 [15] 15 M. Isi and A. J. Weinstein , arXiv:1710.03794 . [16] 16 K. Chatziioannou , N. Yunes , and N. Cornish , Phys. Rev. D 86 , 022004 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.86.022004 [17] 17 E. Berti , Classical Quantum Gravity 32 , 243001 ( 2015 ). CQGRDG 0264-9381 10.1088/0264-9381/32/24/243001 [18] 18 P. A. Rosado , Phys. Rev. D 84 , 084004 ( 2011 ). PRVDAQ 1550-7998 10.1103/PhysRevD.84.084004 [19] 19 X.-J. Zhu , E. Howell , T. Regimbau , D. Blair , and Z.-H. Zhu , Astrophys. J. 739 , 86 ( 2011 ). ASJOAB 1538-4357 10.1088/0004-637X/739/2/86 [20] 20 C. Wu , V. Mandic , and T. Regimbau , Phys. Rev. D 85 , 104024 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.85.104024 [21] 21 X.-J. Zhu , E. J. Howell , D. G. Blair , and Z.-H. Zhu , Mon. Not. R. Astron. Soc. 431 , 882 ( 2013 ). MNRAA4 0035-8711 10.1093/mnras/stt207 [22] 22 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 116 , 131102 ( 2016 ). PRLTAO 0031-9007 10.1103/PhysRevLett.116.131102 [23] 23 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 120 , 091101 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.091101 [24] 24 A. Buonanno , G. Sigl , G. G. Raffelt , H.-T. Janka , and E. Müller , Phys. Rev. D 72 , 084001 ( 2005 ). PRVDAQ 1550-7998 10.1103/PhysRevD.72.084001 [25] 25 X.-J. Zhu , E. Howell , and D. Blair , Mon. Not. R. Astron. Soc. Lett. 409 , L132 ( 2010 ). MNRAB5 1745-3925 10.1111/j.1745-3933.2010.00965.x [26] 26 K. Crocker , V. Mandic , T. Regimbau , K. Belczynski , W. Gladysz , K. Olive , T. Prestegard , and E. Vangioni , Phys. Rev. D 92 , 063005 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.92.063005 [27] 27 P. A. Rosado , Phys. Rev. D 86 , 104007 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.86.104007 [28] 28 C.-J. Wu , V. Mandic , and T. Regimbau , Phys. Rev. D 87 , 042002 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.87.042002 [29] 29 D. Talukder , E. Thrane , S. Bose , and T. Regimbau , Phys. Rev. D 89 , 123008 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.89.123008 [30] 30 S. Ölmez , V. Mandic , and X. Siemens , Phys. Rev. D 81 , 104028 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.81.104028 [31] 31 J. Aasi , Phys. Rev. Lett. 112 , 131101 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.112.131101 [32] 32 M. Maggiore , Phys. Rep. 331 , 283 ( 2000 ). PRPLCM 0370-1573 10.1016/S0370-1573(99)00102-7 [33] 33 J. T. Giblin and E. Thrane , Phys. Rev. D 90 , 107502 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.90.107502 [34] 34 R. Easther , J. T. Giblin , and E. A. Lim , Phys. Rev. Lett. 99 , 221301 ( 2007 ). PRLTAO 0031-9007 10.1103/PhysRevLett.99.221301 [35] 35 J. L. Cook and L. Sorbo , Phys. Rev. D 85 , 023534 ( 2012 ). PRVDAQ 1550-7998 10.1103/PhysRevD.85.023534 [36] 36 C. Caprini , R. Durrer , and G. Servant , Phys. Rev. D 77 , 124015 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.77.124015 [37] 37 C. Caprini , R. Durrer , and G. Servant , J. Cosmol. Astropart. Phys. 12 ( 2009 ) 024 . JCAPBP 1475-7516 10.1088/1475-7516/2009/12/024 [38] 38 A. Lopez and K. Freese , J. Cosmol. Astropart. Phys. 1 ( 2015 ) 037 . JCAPBP 1475-7516 10.1088/1475-7516/2015/01/037 [39] 39 A. Nishizawa , A. Taruya , K. Hayama , S. Kawamura , and M.-a. Sakagami , Phys. Rev. D 79 , 082002 ( 2009 ). PRVDAQ 1550-7998 10.1103/PhysRevD.79.082002 [40] 40 A. Nishizawa , A. Taruya , and S. Kawamura , Phys. Rev. D 81 , 104043 ( 2010 ). PRVDAQ 1550-7998 10.1103/PhysRevD.81.104043 [41] 41 A. Nishizawa and K. Hayama , Phys. Rev. D 88 , 064005 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.064005 [42] 42 T. Callister , A. S. Biscoveanu , N. Christensen , M. Isi , A. Matas , O. Minazzoli , T. Regimbau , M. Sakellariadou , J. Tasson , and E.Thrane , Phys. Rev. X 7 , 041058 ( 2017 ). PRXHAE 2160-3308 10.1103/PhysRevX.7.041058 [43] 43 M. Isi , A. J. Weinstein , C. Mead , and M. Pitkin , Phys. Rev. D 91 , 082002 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.91.082002 [44] 44 M. Isi , M. Pitkin , and A. J. Weinstein , Phys. Rev. D 96 , 042001 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.042001 [45] 45 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 120 , 031104 ( 2018 ). PRLTAO 0031-9007 10.1103/PhysRevLett.120.031104 [46] 46 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 121101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.121101 [47] 47 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 121102 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.121102 [48] 48 See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.201102 for an expanded discussion of hypothesis testing, calibration uncertainties, and complete parameter estimation results. [49] 49 J. Aasi , Phys. Rev. Lett. 113 , 231101 ( 2014 ). PRLTAO 0031-9007 10.1103/PhysRevLett.113.231101 [50] 50 P. D. Welch , IEEE Trans. Audio Electroacoust. 15 , 70 ( 1967 ). ITADAS 0018-9278 10.1109/TAU.1967.1161901 [51] 51 B. P. Abbott ( LIGO Scientific Collaboration and Virgo Collaboration ) , Phys. Rev. Lett. 118 , 121101 ( 2017 ). PRLTAO 0031-9007 10.1103/PhysRevLett.118.121101 [52] 52 E. Thrane , N. Christensen , and R. M. S. Schofield , Phys. Rev. D 87 , 123009 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.87.123009 [53] 53 E. Thrane , N. Christensen , R. M. S. Schofield , and A. Effler , Phys. Rev. D 90 , 023013 ( 2014 ). PRVDAQ 1550-7998 10.1103/PhysRevD.90.023013 [54] 54 Y. Himemoto and A. Taruya , Phys. Rev. D 96 , 022004 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.022004 [55] 55 C. Cahillane , Phys. Rev. D 96 , 102001 ( 2017 ). PRVDAQ 2470-0010 10.1103/PhysRevD.96.102001 [56] 56 J. T. Whelan , E. L. Robinson , J. D. Romano , and E. H. Thrane , J. Phys. Conf. Ser. 484 , 012027 ( 2014 ). JPCSDZ 1742-6588 10.1088/1742-6596/484/1/012027 [57] 57 R. Jackiw and S.-Y. Pi , Phys. Rev. D 68 , 104012 ( 2003 ). PRVDAQ 0556-2821 10.1103/PhysRevD.68.104012 [58] 58 S. Alexander , L. S. Finn , and N. Yunes , Phys. Rev. D 78 , 066005 ( 2008 ). PRVDAQ 1550-7998 10.1103/PhysRevD.78.066005 [59] 59 S. Alexander and N. Yunes , Phys. Rep. 480 , 1 ( 2009 ). PRPLCM 0370-1573 10.1016/j.physrep.2009.07.002 [60] 60 V. A. Kostelecký , Phys. Rev. D 69 , 105009 ( 2004 ). PRVDAQ 0556-2821 10.1103/PhysRevD.69.105009 [61] 61 V. A. Kostelecký and M. Mewes , Phys. Lett. B 757 , 510 ( 2016 ). PYLBAJ 0370-2693 10.1016/j.physletb.2016.04.040 [62] 62 B. Allen and J. D. Romano , Phys. Rev. D 59 , 102001 ( 1999 ). PRVDAQ 0556-2821 10.1103/PhysRevD.59.102001 [63] 63 N. Christensen , Phys. Rev. D 46 , 5250 ( 1992 ). PRVDAQ 0556-2821 10.1103/PhysRevD.46.5250 [64] 64 J. D. Romano and N. J. Cornish , Living Rev. Relativity 20 , 2 ( 2017 ). 1433-8351 10.1007/s41114-017-0004-1 [65] 65 P. A. R. Ade , Astron. Astrophys. 594 , A13 ( 2016 ). AAEJAF 0004-6361 10.1051/0004-6361/201525830 [66] 66 R. A. Isaacson , Phys. Rev. 166 , 1272 ( 1968 ). PHRVAO 0031-899X 10.1103/PhysRev.166.1272 [67] 67 M. Isi and L. Stein , LIGO Document No. P1700234 (to be published). [68] 68 D. Meacher , M. Coughlin , S. Morris , T. Regimbau , N. Christensen , S. Kandhasamy , V. Mandic , J. D. Romano , and E. Thrane , Phys. Rev. D 92 , 063002 ( 2015 ). PRVDAQ 1550-7998 10.1103/PhysRevD.92.063002 [69] 69 J. Buchner , A. Georgakakis , K. Nandra , L. Hsu , C. Rangel , M. Brightman , A. Merloni , M. Salvato , J. Donley , and D. Kocevski , Astron. Astrophys. 564 , A125 ( 2014 ). AAEJAF 0004-6361 10.1051/0004-6361/201322971 [70] 70 F. Feroz and M. P. Hobson , Mon. Not. R. Astron. Soc. 384 , 449 ( 2008 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2007.12353.x [71] 71 F. Feroz , M. P. Hobson , and M. Bridges , Mon. Not. R. Astron. Soc. 398 , 1601 ( 2009 ). MNRAA4 0035-8711 10.1111/j.1365-2966.2009.14548.x [72] 72 F. Feroz , M. P. Hobson , E. Cameron , and A. N. Pettitt , arXiv:1306.2144 . [73] 73 J. Skilling , AIP Conf. Proc. 735 , 395 ( 2004 ). APCPCS 0094-243X 10.1063/1.1835238 [74] 74 J. Skilling , Bayesian Analysis 1 , 833 ( 2006 ). 10.1214/06-BA127 [75] 75 T. Callister , L. Sammut , S. Qiu , I. Mandel , and E. Thrane , Phys. Rev. X 6 , 031018 ( 2016 ). PRXHAE 2160-3308 10.1103/PhysRevX.6.031018 [76] 76 Y. Aso , Y. Michimura , K. Somiya , M. Ando , O. Miyakawa , T. Sekiguchi , D. Tatsumi , and H. Yamamoto , Phys. Rev. D 88 , 043007 ( 2013 ). PRVDAQ 1550-7998 10.1103/PhysRevD.88.043007 [77] 77 T. Akutsu , Prog. Theor. Exp. Phys. 2018 , 013F01 ( 2018 ). PTEPCR 2050-3911 10.1093/ptep/ptx180 [78] 78 B. Iyer , LIGO-India Tech. Report No. LIGO-M1100296 ( 2011 ), https://dcc.ligo.org/LIGO-M1100296/public .
Funders | Funder number |
---|---|
Not added | ST/N005422/1, ST/M005844/1, ST/K000845/1, ST/N000633/1, ST/N000072/1, ST/P000258/1, ST/H002006/1, ST/J00166X/1, ST/N005430/1 |
National Science Foundation | 1708081, 1607585, 1700765, 1707835, 1404139 |
Directorate for Mathematical and Physical Sciences | |
Kavli Foundation | |
National Kidney Foundation of Iowa | |
Canadian Institute for Advanced Research | |
Natural Sciences and Engineering Research Council of Canada | |
Ontario Ministry of Economic Development and Innovation | |
Science and Technology Facilities Council | PPA/G/S/2002/00652, Gravitational Waves, ST/I006269/1 |
Leverhulme Trust | |
Royal Society | |
Scottish Funding Council | |
Scottish Universities Physics Alliance | |
European Commission | |
Australian Research Council | |
Department of Science and Technology, Ministry of Science and Technology, India | |
Council of Scientific and Industrial Research, India | |
Japan Society for the Promotion of Science | 18H03698 |
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung | 159922 |
National Natural Science Foundation of China | |
Science and Engineering Research Board | |
Russian Foundation for Basic Research | |
Research Grants Council, University Grants Committee | |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | |
Generalitat Valenciana | |
Hungarian Scientific Research Fund | |
National Research Foundation of Korea | |
Instituto Nazionale di Fisica Nucleare | |
Narodowe Centrum Nauki | |
Ministry of Human Resource Development | |
Ministry of Science and Technology, Taiwan | |
Centre National de la Recherche Scientifique | |
Russian Science Foundation | |
European Regional Development Fund | |
Universitat de les Illes Balears | |
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal | |
Agencia Estatal de Investigación | |
Ministério da Ciência, Tecnologia, Inovações e Comunicações | |
Istituto Nazionale di Fisica Nucleare | |
ICTP South American Institute for Fundamental Research |