Abstract
Anticaries protein vaccines that induce a mucosal immune response are not effective. Therefore, development of effective and convenient anticaries vaccines is a priority of dental research. Here we generated self-assembling nanoparticles by linking the glucan-binding region of Streptococcus mutans glucosyltransferase (GLU) to the N-terminal domain of ferritin to determine whether these novel nanoparticles enhanced the immunogenicity of an anticaries protein vaccine against GLU in rodents. We constructed the expression plasmid pET28a-GLU-FTH and purified the proteins from bacteria using size-exclusion chromatography. BALB/c mice were used to evaluate the ability of GLU-ferritin (GLU-FTH) nanoparticles to induce GLU-specific mucosal and systemic responses. The protective efficiency of GLU-FTH nanoparticles was compared with that of GLU alone or a mixture of GLU and poly(I:C) after administering an intranasal infusion to Wistar rats. The phagocytosis and maturation of dendritic cells (DCs) exposed in vitro to the nanoparticles were assessed using flow cytometry. The GLU-FTH nanoparticle vaccine elicited significantly higher levels of GLU-specific antibodies compared with GLU or a mixture of GLU and poly(I:C). Immunization with GLU-FTH achieved lower caries scores compared with those of the other vaccines. Administration of GLU-FTH nanoparticles enhanced phagocytosis by DCs and their maturation. Thus, self-assembling GLU-FTH is a highly effective anticaries mucosal vaccine that enhanced antibody production and inhibited S. mutans infection in rodents.
Original language | English |
---|---|
Pages (from-to) | 2332-2340 |
Journal | Human Vaccines & Immunotherapeutics |
Volume | 13 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2017 |