Self-Supervised Image Denoising of Third Harmonic Generation Microscopic Images of Human Glioma Tissue by Transformer-Based Blind Spot (TBS) Network

Yuchen Wu, Siqi Qiu, Marie Louise Groot, Zhiqing Zhang*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

33 Downloads (Pure)

Abstract

Third harmonic generation (THG) microscopy shows great potential for instant pathology of brain tumor tissue during surgery. However, due to the maximal permitted exposure of laser intensity and inherent noise of the imaging system, the noise level of THG images is relatively high, which affects subsequent feature extraction analysis. Denoising THG images is challenging for modern deep-learning based methods because of the rich morphologies contained and the difficulty in obtaining the noise-free counterparts. To address this, in this work, we propose an unsupervised deep-learning network for denoising of THG images which combines a self-supervised blind spot method and a U-shape Transformer using a dynamic sparse attention mechanism. The experimental results on THG images of human glioma tissue show that our approach exhibits superior denoising performance qualitatively and quantitatively compared with previous methods. Our model achieves an improvement of 2.47-9.50 dB in SNR and 0.37-7.40 dB in CNR, compared to six recent state-of-the-art unsupervised learning models including Neighbor2Neighbor, Blind2Unblind, Self2Self+, ZS-N2N, Noise2Info and SDAP. To achieve an objective evaluation of our model, we also validate our model on public datasets including natural and microscopic images, and our model shows a better denoising performance than several recent unsupervised models such as Neighbor2Neighbor, Blind2Unblind and ZS-N2N. In addition, our model is nearly instant in denoising a THG image, which has the potential for real-time applications of THG microscopy.

Original languageEnglish
Pages (from-to)4688-4700
Number of pages13
JournalIEEE Journal of Biomedical and Health Informatics
Volume28
Issue number8
Early online date27 May 2024
DOIs
Publication statusPublished - Aug 2024

Bibliographical note

Publisher Copyright:
© 2013 IEEE.

Keywords

  • blind spot
  • denoising
  • self-supervised learning
  • Third harmonic generation microscopy
  • Transformer

Fingerprint

Dive into the research topics of 'Self-Supervised Image Denoising of Third Harmonic Generation Microscopic Images of Human Glioma Tissue by Transformer-Based Blind Spot (TBS) Network'. Together they form a unique fingerprint.

Cite this