Abstract
Load balancing is critical for the performance of big server clusters. Although many load balancers are available for improving performance in parallel applications, the load-balancing problem is not fully solved yet. Recent advances in security and architecture design advocate load balancing on a session level. However, due to the high dimensionality of session-level load balancing, little attention has been paid to this new problem. In this paper, we formulate the session-level load-balancing problem as a Markov decision problem. Then, we use approximate dynamic programming to obtain approximate load-balancing policies that are scalable with the problem instance. Extensive numerical experiments show that the policies have nearly optimal performance. © 2009 IEEE.
Original language | English |
---|---|
Pages (from-to) | 2018-2023 |
Journal | IEEE Transactions on Automatic Control |
Volume | 54 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2009 |