TY - JOUR

T1 - Simple forms and invariant subspaces of H-expansive matrices

AU - Ran, A.C.M.

AU - Fourie, J.H.

AU - Groenewald, G.J.

AU - Janse van Rensburg, D.B.

PY - 2015

Y1 - 2015

N2 - In this paper we consider a simple form for pairs of matrices (A,H), where H is a real symmetric invertible matrix, and A is a real H-expansive matrix, that is, ATHA-H is positive semidefinite. For such pairs we use the simple form to give an explicit construction of real A-invariant maximal H-semidefinite subspaces.

AB - In this paper we consider a simple form for pairs of matrices (A,H), where H is a real symmetric invertible matrix, and A is a real H-expansive matrix, that is, ATHA-H is positive semidefinite. For such pairs we use the simple form to give an explicit construction of real A-invariant maximal H-semidefinite subspaces.

U2 - 10.1016/j.laa.2014.11.022

DO - 10.1016/j.laa.2014.11.022

M3 - Article

VL - 470

SP - 300

EP - 340

JO - Linear Algebra and its Applications

JF - Linear Algebra and its Applications

SN - 0024-3795

ER -