Single particle approaches to plasmon-driven catalysis

Ruben F. Hamans, Rifat Kamarudheen, Andrea Baldi*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Plasmonic nanoparticles have recently emerged as a promising platform for photocatalysis thanks to their ability to efficiently harvest and convert light into highly energetic charge carriers and heat. The catalytic properties of metallic nanoparticles, however, are typically measured in ensemble experiments. These measurements, while providing statistically significant information, often mask the intrinsic heterogeneity of the catalyst particles and their individual dynamic behavior. For this reason, single particle approaches are now emerging as a powerful tool to unveil the structure-function relationship of plasmonic nanocatalysts. In this Perspective, we highlight two such techniques based on far-field optical microscopy: surface-enhanced Raman spectroscopy and super-resolution fluorescence microscopy. We first discuss their working principles and then show how they are applied to the in-situ study of catalysis and photocatalysis on single plasmonic nanoparticles. To conclude, we provide our vision on how these techniques can be further applied to tackle current open questions in the field of plasmonic chemistry.

Original languageEnglish
Article number2377
Pages (from-to)1-20
Number of pages20
JournalNanomaterials
Volume10
Issue number12
Early online date29 Nov 2020
DOIs
Publication statusPublished - Dec 2020

Keywords

  • Heterogeneous catalysis
  • Nanoparticles
  • Photocatalysis
  • Plasmonics
  • Single molecule localization
  • Super-resolution microscopy
  • Surface-enhanced Raman spectroscopy

Fingerprint Dive into the research topics of 'Single particle approaches to plasmon-driven catalysis'. Together they form a unique fingerprint.

Cite this