Size constancy affects the perception and parietal neural representation of object size

Stephanie Kristensen, Alessio Fracasso, Serge O. Dumoulin, Jorge Almeida, Ben M. Harvey*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Humans and animals rely on accurate object size perception to guide behavior. Object size is judged from visual input, but the relationship between an object's retinal size and its real-world size varies with distance. Humans perceive object sizes to be relatively constant when retinal size changes. Such size constancy compensates for the variable relationship between retinal size and real-world size, using the context of recent retinal sizes of the same object to bias perception towards its likely real-world size. We therefore hypothesized that object size perception may be affected by the range of recently viewed object sizes, attracting perceived object sizes towards recently viewed sizes. We demonstrate two systematic biases: a central tendency attracting perceived size towards the average size across all trials, and a serial dependence attracting perceived size towards the size presented on the previous trial. We recently described topographic object size maps in the human parietal cortex. We therefore hypothesized that neural representations of object size here would be attracted towards recently viewed sizes. We used ultra-high-field (7T) functional MRI and population receptive field modeling to compare object size representations measured with small (0.05–1.4°diameter) and large objects sizes (0.1–2.8°). We found that parietal object size preferences and tuning widths follow this presented range, but change less than presented object sizes. Therefore, perception and neural representation of object size are attracted towards recently viewed sizes. This context-dependent object size representation reveals effects on neural response preferences that may underlie context dependence of object size perception.

Original languageEnglish
Article number117909
Pages (from-to)1-11
Number of pages11
JournalNeuroImage
Volume232
Early online date27 Feb 2021
DOIs
Publication statusPublished - 15 May 2021

Bibliographical note

Funding Information:
This work was supported by Netherlands Organization for Scientific Research grants #452.17.012 to BH, #016.Vici.185.050 to SD, by Portuguese Foundation for Science and Technology Investgador grant #IF/01405/2014 to BH and Programa COMPETE grant #PTDC/MHC-PCN/0522/2014 to JA and SK, by Royal Netherlands Academy of Arts and Sciences Ammodo award to SD and by Biotechnology and Biological Sciences Research Council (UK) grant #BB/S006605/1 to AF, and by an European Research Council Starting Grant (#802553, ?ContentMAP?) to JA.

Publisher Copyright:
© 2021

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Funding

This work was supported by Netherlands Organization for Scientific Research grants #452.17.012 to BH, #016.Vici.185.050 to SD, by Portuguese Foundation for Science and Technology Investgador grant #IF/01405/2014 to BH and Programa COMPETE grant #PTDC/MHC-PCN/0522/2014 to JA and SK, by Royal Netherlands Academy of Arts and Sciences Ammodo award to SD and by Biotechnology and Biological Sciences Research Council (UK) grant #BB/S006605/1 to AF, and by an European Research Council Starting Grant (#802553, ?ContentMAP?) to JA.

FundersFunder number
Portuguese Foundation for Science and Technology Investgador/01405/2014
Royal Netherlands Academy of Arts and Sciences Ammodo
Horizon 2020 Framework Programme802553
Biotechnology and Biological Sciences Research Council#BB/S006605/1
European Research Council
Nederlandse Organisatie voor Wetenschappelijk Onderzoek452.17.012
Programa Operacional Temático Factores de Competitividade/MHC-PCN/0522/2014

    Keywords

    • Functional MRI
    • Object size
    • Serial dependence
    • Size constancy

    Fingerprint

    Dive into the research topics of 'Size constancy affects the perception and parietal neural representation of object size'. Together they form a unique fingerprint.

    Cite this