Abstract
G-protein coupled receptors (GPCRs) are important drug targets for various diseases and of major interest to pharmaceutical companies. The function of individual members of this protein family can be modulated by the binding of small molecules at the extracellular side of the structurally conserved transmembrane (TM) domain. Here, we present Snooker, a structure-based approach to generate pharmacophore hypotheses for compounds binding to this extracellular side of the TM domain. Snooker does not require knowledge of ligands, is therefore suitable for apo-proteins, and can be applied to all receptors of the GPCR protein family. The method comprises the construction of a homology model of the TM domains and prioritization of residues on the probability of being ligand binding. Subsequently, protein properties are converted to ligand space, and pharmacophore features are generated at positions where protein ligand interactions are likely. Using this semiautomated knowledge-driven bioinformatics approach we have created pharmacophore hypotheses for 15 different GPCRs from several different subfamilies. For the beta-2-adrenergic receptor we show that ligand poses predicted by Snooker pharmacophore hypotheses reproduce literature supported binding modes for ∼75% of compounds fulfilling pharmacophore constraints. All 15 pharmacophore hypotheses represent interactions with essential residues for ligand binding as observed in mutagenesis experiments and compound selections based on these hypotheses are shown to be target specific. For 8 out of 15 targets enrichment factors above 10-fold are observed in the top 0.5% ranked compounds in a virtual screen. Additionally, prospectively predicted ligand binding poses in the human dopamine D3 receptor based on Snooker pharmacophores were ranked among the best models in the community wide GPCR dock 2010. © 2011 American Chemical Society.
Original language | English |
---|---|
Pages (from-to) | 2277-2292 |
Number of pages | 15 |
Journal | Journal of Chemical Information and Modeling |
Volume | 51 |
DOIs | |
Publication status | Published - 2011 |