Abstract
A complex unit hypergraph is a hypergraph where each vertex-edge incidence is given a complex unit label. We define the adjacency, incidence, Kirchoff Laplacian and normalized Laplacian of a complex unit hypergraph and study each of them. Eigenvalue bounds for the adjacency, Kirchoff Laplacian and normalized Laplacian are also found. Complex unit hypergraphs naturally generalize several hypergraphic structures such as oriented hypergraphs, where vertex-edge incidences are labelled as either +1 or −1, as well as ordinary hypergraphs. Complex unit hypergraphs also generalize their graphic analogues, which are complex unit gain graphs, signed graphs, and ordinary graphs.
Original language | English |
---|---|
Article number | #P3.09 |
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Art of Discrete and Applied Mathematics |
Volume | 7 |
Issue number | 3 |
DOIs | |
Publication status | Published - 22 Nov 2024 |
Externally published | Yes |
Bibliographical note
Published online 28 November 2024.Publisher Copyright:
© 2024 University of Primorska. All rights reserved.
Keywords
- adjacency matrix
- Hypergraphs
- Laplace operators
- spectrum