SPOTTER: A framework for investigating convention formation in a visually grounded human-robot reference task

Research output: Chapter in Book / Report / Conference proceedingConference contributionAcademicpeer-review

Abstract

Linguistic conventions that arise in dialogue reflect common ground and can increase communicative efficiency. Social robots that can understand these conventions and the process by which they arise have the potential to become efficient communication partners. Nevertheless, it is unclear how robots can engage in convention formation when presented with both familiar and new information. We introduce an adaptable game framework, SPOTTER, to study the dynamics of convention formation for visually grounded referring expressions in both human-human and human-robot interaction. Specifically, we seek to elicit convention forming for members of an inner circle of well-known individuals in the common ground, as opposed to individuals from an outer circle, who are unfamiliar. We release an initial corpus of 5000 utterances from two exploratory pilot experiments in spoken Dutch. Different from previous work focussing on human-human interaction, we find that referring expressions for both familiar and unfamiliar individuals maintain their length throughout human-robot interaction. Stable conventions are formed, although these conventions can be impacted by distracting outer circle individuals. With our distinction between familiar and unfamiliar, we create a contrastive operationalization of common ground, which aids research into convention formation.

Original languageEnglish
Title of host publicationProceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
EditorsNicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, Nianwen Xue
PublisherELRA and ICCL
Pages15202-15215
Number of pages14
ISBN (Electronic)9782493814104
Publication statusPublished - 2024
EventJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024 - Hybrid, Torino, Italy
Duration: 20 May 202425 May 2024

Conference

ConferenceJoint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation, LREC-COLING 2024
Country/TerritoryItaly
CityHybrid, Torino
Period20/05/2425/05/24

Bibliographical note

Publisher Copyright:
© 2024 ELRA Language Resource Association: CC BY-NC 4.0.

Keywords

  • convention formation
  • human-robot interaction
  • reference games
  • Referring expressions

Fingerprint

Dive into the research topics of 'SPOTTER: A framework for investigating convention formation in a visually grounded human-robot reference task'. Together they form a unique fingerprint.

Cite this