TY - JOUR
T1 - Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping
AU - Bobbert, M.F.
PY - 2011
Y1 - 2011
N2 - The purpose of this study was to understand how humans regulate their 'leg stiffness' in hopping, and to determine whether this regulation is intended to minimize energy expenditure. 'Leg stiffness' is the slope of the relationship between ground reaction force and displacement of the centre of mass (CM). Variations in leg stiffness were achieved in six subjects by having them hop at maximum and submaximum heights at a frequency of 1.7 Hz. Kinematics, ground reaction forces and electromyograms were measured. Leg stiffness decreased with hopping height, from 350 N m21 kg21 at 26 cm to 150 N m21 kg21 at 14 cm. Subjects reduced hopping height primarily by reducing the amplitude of muscle activation. Experimental results were reproduced with a model of the musculoskeletal system comprising four body segments and nine Hill-type muscles, with muscle stimulation STIM(t) as only input. Correspondence between simulated hops and experimental hops was poor when STIM(t) was optimized to minimize mechanical energy expenditure, but good when an objective function was used that penalized jerk of CM motion, suggesting that hopping subjects are not minimizing energy expenditure. Instead, we speculated, subjects are using a simple control strategy that results in smooth movements and a decrease in leg stiffness with hopping height. © 2011 The Royal Society.
AB - The purpose of this study was to understand how humans regulate their 'leg stiffness' in hopping, and to determine whether this regulation is intended to minimize energy expenditure. 'Leg stiffness' is the slope of the relationship between ground reaction force and displacement of the centre of mass (CM). Variations in leg stiffness were achieved in six subjects by having them hop at maximum and submaximum heights at a frequency of 1.7 Hz. Kinematics, ground reaction forces and electromyograms were measured. Leg stiffness decreased with hopping height, from 350 N m21 kg21 at 26 cm to 150 N m21 kg21 at 14 cm. Subjects reduced hopping height primarily by reducing the amplitude of muscle activation. Experimental results were reproduced with a model of the musculoskeletal system comprising four body segments and nine Hill-type muscles, with muscle stimulation STIM(t) as only input. Correspondence between simulated hops and experimental hops was poor when STIM(t) was optimized to minimize mechanical energy expenditure, but good when an objective function was used that penalized jerk of CM motion, suggesting that hopping subjects are not minimizing energy expenditure. Instead, we speculated, subjects are using a simple control strategy that results in smooth movements and a decrease in leg stiffness with hopping height. © 2011 The Royal Society.
UR - https://www.scopus.com/pages/publications/79955410042
UR - https://www.scopus.com/inward/citedby.url?scp=79955410042&partnerID=8YFLogxK
U2 - 10.1098/rstb.2010.0348
DO - 10.1098/rstb.2010.0348
M3 - Article
SN - 0962-8436
VL - 366
SP - 1516
EP - 1529
JO - Philosophical Transactions of the Royal Society B. Biological Sciences
JF - Philosophical Transactions of the Royal Society B. Biological Sciences
IS - 1570
ER -