Stable Ligand Coordination at the Surface of Colloidal CsPbBr3 Nanocrystals

Danila Quarta, Muhammad Imran, Agostina Lina Capodilupo, Urko Petralanda, Bas Van Beek, Filippo De Angelis, Liberato Manna, Ivan Infante, Luca De Trizio, Carlo Giansante*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Ruling over the surface chemistry of metal halide perovskite nanocrystals (NCs) is crucial to access reliable luminophores. Here, we provide an atomic-level description of the surface of colloidal CsPbBr3 NCs, achieving an effective passivation strategy that leads to near-unity photoluminescence quantum yield. To this end, we used two different types of CsPbBr3 NCs, which had been synthesized with an outer shell of either oleylammonium bromide ion pairs or Cs-oleate complexes. We perturbed the dynamic equilibria at the NCs' surface with ligands from a comprehensive library, including amines (and their conjugated acids) with different basicities, chain lengths, and steric encumbrances. We demonstrate that control of both ligand binding affinity and ligand-to-NC molar ratio is essential to attain thermodynamically stable coordination of the NC surface. We thus present a reliable protocol for managing the surface chemistry of colloidal CsPbBr3 NCs and for selectively addressing their ligand-induced morphological (and structural) transformations.

Original languageEnglish
Pages (from-to)3715-3726
Number of pages12
JournalJournal of Physical Chemistry Letters
Volume10
Issue number13
DOIs
Publication statusPublished - 18 Jun 2019

Fingerprint

Dive into the research topics of 'Stable Ligand Coordination at the Surface of Colloidal CsPbBr<sub>3</sub> Nanocrystals'. Together they form a unique fingerprint.

Cite this