Abstract
We consider a multi-period staffing problem in a single-shift call center. The call center handles inbound calls, as well as some alternative back-office jobs. The call arrival process is assumed to follow a doubly non-stationary stochastic process with a random mean arrival rate. The inbound calls have to be handled as quickly as possible, while the back-office jobs, such as answering emails, may be delayed to some extent. The staffing problem is modeled as a generalized newsboy-type model under an expected cost criterion. Two different solution approaches are considered. First, by discretization of the underlying probability distribution, we explicitly formulate the expected cost newsboy-type formulation as a stochastic program. Second, we develop a robust programming formulation. The characteristics of the two methods and the associated optimal solutions are illustrated through a numerical study based on real-life data. In particular we focus on the numerical tractability of each formulation. We also show that the alternative workload of back-office jobs offers an interesting flexibility allowing to decrease the total operating cost of the call center. © 2011 Springer-Verlag.
Original language | English |
---|---|
Pages (from-to) | 691-721 |
Journal | OR Spectrum: Quantitative Approaches in Management |
Volume | 34 |
Issue number | 3 |
Early online date | 23 May 2011 |
DOIs | |
Publication status | Published - 2012 |