Abstract
Fiber optics provides a compact endoscopy probe, which can look deep inside the tissue [1]. However, conventional microscopy techniques, including fiber-based, are limited by diffraction. The majority of super-resolution techniques rely on the fluorescent labeling of the sample [2]. In contrast, computational ghost imaging (CGI) via sparsity constraint overcomes the diffraction limit without exploiting any specific properties of the fluorescent label [3]. By illuminating the sample with a set of nearly orthogonal intensity patterns and measuring the transmitted intensity, one can numerically reconstruct the sample transmission function with the resolution limited neither by the diffraction nor by Nyquist limits [4].
Original language | English |
---|---|
Title of host publication | 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC) |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781665418768 |
ISBN (Print) | 9781665418768 |
DOIs | |
Publication status | Published - 30 Sept 2021 |
Event | 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021 - Munich, Germany Duration: 21 Jun 2021 → 25 Jun 2021 |
Conference
Conference | 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2021 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 21/06/21 → 25/06/21 |
Bibliographical note
Publisher Copyright:© 2021 IEEE.