Supporting data of spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo

Gustavo A Higuera, Hugo Fernandes, Tim W G M Spitters, Jeroen van de Peppel, Nils Aufferman, Roman Truckenmueller, Maryana Escalante, Reinout Stoop, Johannes P van Leeuwen, Jan de Boer, Vinod Subramaniam, Marcel Karperien, Clemens van Blitterswijk, Anton van Boxtel, Lorenzo Moroni

    Research output: Contribution to JournalArticleAcademicpeer-review

    Abstract

    This data article contains seven figures and two tables supporting the research article entitled: spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo[1]. The data explain the culture of stromal cells in vitro in three culture systems: discs, scaffolds and scaffolds in a perfusion bioreactor system. Also, quantification of extracellular matrix components (ECM) in vitro and staining of ECM components in vivo can be found here. Finally the quantification of blood vessels dimensions from CD31 signals and representative histograms of stanniocalcin-1 fluorescent signals in negative controls and experimental conditions in vivo are presented.

    Original languageEnglish
    Pages (from-to)84-94
    Number of pages11
    JournalData in brief
    Volume5
    DOIs
    Publication statusPublished - Dec 2015

    Keywords

    • Journal Article

    Fingerprint

    Dive into the research topics of 'Supporting data of spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo'. Together they form a unique fingerprint.

    Cite this