Synaptotagmin-1 enables frequency coding by suppressing asynchronous release in a temperature dependent manner

Vincent Huson, Maaike A. van Boven, Alexia Stuefer, Matthijs Verhage, L. Niels Cornelisse*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

To support frequency-coded information transfer, mammalian synapses tightly synchronize neurotransmitter release to action potentials (APs). However, release desynchronizes during AP trains, especially at room temperature. Here we show that suppression of asynchronous release by Synaptotagmin-1 (Syt1), but not release triggering, is highly temperature sensitive, and enhances synchronous release during high-frequency stimulation. In Syt1-deficient synapses, asynchronous release increased with temperature, opposite to wildtype synapses. Mutations in Syt1 C2B-domain polybasic stretch (Syt1 K326Q,K327Q,K331Q) did not affect synchronization during sustained activity, while the previously observed reduced synchronous response to a single AP was confirmed. However, an inflexible linker between the C2-domains (Syt1 9Pro) reduced suppression, without affecting synchronous release upon a single AP. Syt1 9Pro expressing synapses showed impaired synchronization during AP trains, which was rescued by buffering global Ca2+ to prevent asynchronous release. Hence, frequency coding relies on Syt1’s temperature sensitive suppression of asynchronous release, an aspect distinct from its known vesicle recruitment and triggering functions.

Original languageEnglish
Article number11341
JournalScientific Reports
Volume9
Issue number1
DOIs
Publication statusPublished - 1 Dec 2019

Funding

We thank Desiree Schut, Lisa Laan, and Frank den Oudsten for producing glia feeders and primary culture assistance, Joke Wortel for animal breeding, Frank den Oudsten and Joost Hoetjes for genotyping, Robbert Zalm for cloning and producing viral particles, Jurjen Broeke and Hans Lodder for technical assistance. This work was supported by an ERC Advanced Grant (322966) of the European Union (to M.V.).

FundersFunder number
H2020 European Research Council
Seventh Framework Programme322966
European Commission
European Research Council

    Fingerprint

    Dive into the research topics of 'Synaptotagmin-1 enables frequency coding by suppressing asynchronous release in a temperature dependent manner'. Together they form a unique fingerprint.

    Cite this