Systematic overview of hepatitis C infection in the Middle East and North Africa

Karima Chaabna*, Sohaila Cheema, Amit Abraham, Hekmat Alrouh, Albert B. Lowenfels, Patrick Maisonneuve, Ravinder Mamtani

*Corresponding author for this work

Research output: Contribution to JournalReview articleAcademicpeer-review


AIM To assess the quality of and to critically synthesize the available data on hepatitis C infections in the Middle East and North Africa (MENA) region to map evidence gaps. METHODS We conducted an overview of systematic reviews (SRs) following an a priori developed protocol (CRD42017076736). Our overview followed the preferred reporting items for systematic reviews and meta-analyses guidelines for reporting SRs and abstracts and did not receive any funding. Two independent reviewers systematically searched MEDLINE and conducted a multistage screening of the identified articles. Out of 5758 identified articles, 37 SRs of hepatitis C virus (HCV) infection in populations living in 20 countries in the MENA region published between 2008 and 2016 were included in our overview. The nine primary outcomes of interest were HCV antibody (anti-) prevalences and incidences in different at-risk populations; the HCV viremic (RNA positive) rate in HCV-positive individuals; HCV viremic prevalence in the general population (GP); the prevalence of HCV co-infection with the hepatitis B virus, human immunodeficiency virus, or schistosomiasis; the HCV genotype/subtype distribution; and the risk factors for HCV transmission. The conflicts of interest declared by the authors of the SRs were also extracted. Good quality outcomes reported by the SRs were defined as having the population, outcome, study time and setting defined as recommended by the PICOTS framework and a sample size > 100. RESULTS We included SRs reporting HCV outcomes with different levels of quality and precision. A substantial proportion of them synthesized data from mixed populations at differing levels of risk for acquiring HCV or at different HCV infection stages (recent and prior HCV transmissions). They also synthesized the data over long periods of time (e.g., two decades). Anti-HCV prevalence in the GP varied widely in the MENA region from 0.1% (study dates not reported) in the United Arab Emirates to 2.1%-13.5% (2003-2006) in Pakistan and 14.7% (2008) in Egypt. Data were not identified for Bahrain, Jordan, or Palestine. Good quality estimates of anti-HCV prevalence in the GP were reported for Algeria, Djibouti, Egypt, Iraq, Morocco, Pakistan, Syria, Sudan, Tunisia, and Yemen. Anti-HCV incidence estimates in the GP were reported only for Egypt (0.8-6.8 per 1000 person-year, 1997-2003). In Egypt, Morocco, and the United Arab Emirates, viremic rates in anti-HCV-positive individuals from the GP were approximately 70%. In the GP, the viremic prevalence varied from 0.7% (2011) in Saudi Arabia to 5.8% (2007-2008) in Pakistan and 10.0% (2008) in Egypt. Anti-HCV prevalence was lower in blood donors than in the GP, ranging from 0.2% (1992-1993) in Algeria to 1.7% (2005) in Yemen. The reporting quality of the outcomes in blood donors was good in the MENA countries, except in Qatar where no time framework was reported for the outcome. Some countries had anti-HCV prevalence estimates for children, transfused patients, contacts of HCV-infected patients, prisoners, sex workers, and men who have sex with men. CONCLUSION A substantial proportion of the reported outcomes may not help policymakers to develop micro-elimination strategies with precise HCV infection prevention and treatment programs in the region, as nowcasting HCV epidemiology using these data is potentially difficult. In addition to providing accurate information on HCV epidemiology, outcomes should also demonstrate practical and clinical significance and relevance. Based on the available data, most countries in the region have low to moderate anti-HCV prevalence. To achieve HCV elimination by 2030, up-to-date, good quality data on HCV epidemiology are required for the GP and key populations such as people who inject drugs and men who have sex with men.

Original languageEnglish
Pages (from-to)3038-3054
Number of pages17
JournalWorld Journal of Gastroenterology
Issue number27
Publication statusPublished - 21 Jul 2018
Externally publishedYes


Out of the 37 SRs included in our overview, 32 SRs had authors who disclosed no conflict of interest. In one SR[65], authors disclosed financial support from a US National Science Foundation Graduate Research Fellowship, a Sigma Xi Grant-in-Aid of Research, and the Global Health Program at the University of Michigan School of Public Health. Four SRs[6,34,50,56] reported at least one author who disclosed a direct or indirect financial relationship with pharmaceutical companies; among these SRs, three reported financial support from HCV DAA pharmaceutical companies[6,50,56]. Gower et al[6] reported indirect financial support from Gilead Science, AbbVie, and Bristol-Myers Squibb. Bruggmann et al[56] and Sievert et al[50] reported financial support from Gilead Science, AbbVie, Merck, Bristol-Myers Squibb, and Janssen Therapeutics. Bruggmann et al[56] had 34 authors who disclosed direct or indirect financial relationships with at least one of the HCV DAA pharmaceutical companies (37% of the total number of authors). Furthermore, six authors did not disclose their conflict of interest. In Sievert et al[50], out of the 29 authors, 13 (45% of the total number of authors) disclosed direct or indirect financial relationships with at least one of the HCV DAA pharmaceuticals. Interestingly, two[6,56] of the three SRs that reported financial support from HCV DAA pharmaceutical companies were published in 2014 and were the only ones that estimated the total number of viremic cases in the GP. They were also the only SRs that estimated the genotype/subtype distributions in the GP of the MENA region, except for Morocco[43], Pakistan[50,55], and Tunisia[43] where the distributions were also computed by a couple of additional SRs. In Saudi Arabia, the third SR estimating genotype/subtype distributions also had authors who disclosed financial relationships with HCV DAA pharmaceutical companies[50]. Remarkably, in both SRs[6,56], the authors did not follow the PRISMA guidelines (2009)[11] for reporting their reviews in detail; thus, we question the replicability of the reviews. Flow diagrams depicting the numbers of records identified, included, excluded, and, most importantly, the reasons for the exclusions were not presented in those SRs[6,56]. Bruggmann et al[56] did not report the search criteria, eligibility criteria, or the risk of bias assessment of the included studies. Additionally, Bruggmann et al[56] reported that an expert panel reviewed the findings and analysis, and Gower et al[6] reported including “personal communication with experts within countries”. However, the authors did not report how they defined “expert” or any conflicts of interest of these experts[6,56]. These reviews[6,56] had been cited 185[56] and 890[6] times, respectively, by February 12, 2018 (Google Scholar citations) and published in journals with impact factors of 3.9 and 11.3 (in 2014), respectively.

FundersFunder number
Sigma Xi Grant-in-Aid of Research
National Science Foundation
Gilead Sciences
School of Public Health, University of Michigan


    • Genotype
    • Gulf Cooperation Council
    • Hepatitis C
    • Incidence
    • Meta-research
    • Micro-elimination
    • Middle East and North Africa
    • Pakistan
    • Risk factors
    • Systematic review


    Dive into the research topics of 'Systematic overview of hepatitis C infection in the Middle East and North Africa'. Together they form a unique fingerprint.

    Cite this