TY - JOUR
T1 - Teflubenzuron effects on springtail life history traits explained from impairment of its lipid metabolism
AU - Ilyaskina, Diana
AU - Fernandes, Saúl
AU - Berg, Matty P.
AU - Lamoree, Marja H.
AU - van Gestel, Cornelis A.M.
AU - Leonards, Pim E.G.
N1 - Publisher Copyright:
© 2025
PY - 2025/5/25
Y1 - 2025/5/25
N2 - This study investigated how the insecticide teflubenzuron disrupts lipid metabolism in the springtail Folsomia candida, revealing significant alterations in lipid profiles. F. candida was exposed to sub-lethal concentrations of teflubenzuron (0, 0.006, 0.014, 0.035 mg a.s. kg−1 soil dry weight). Untargeted lipidomics was used to study the dynamic changes in lipid profiles in the springtail over exposure intervals of 2, 7, and 14 days exposure intervals. Teflubenzuron induced shifts in lipid profiles, affecting lipid pathways crucial for energy storage, membrane integrity, and signaling, which are essential for survival, reproduction, and stress responses in this springtail. Diacylglycerols (DG) and Triacylglycerols (TG), which play crucial roles in energy storage and lipid-mediated signaling, were substantially affected by teflubenzuron. Decreased levels of DG and TG suggest a shift in priorities from reproduction to maintenance functions, implying disruptions in cholesterol homeostasis and vitellogenesis in response to teflubenzuron exposure. Furthermore, increased levels of fatty acids and N-acylethanolamines in response to teflubenzuron exposure indicated increased energy production and potential oxidative stress, highlighting the springtails' response to pesticide exposure. Certain lipid alterations (N-palmitoylethanolamine (NAE 16:0) and N-stearoylethanolamine (NAE 18:0)), known for their anti-inflammatory properties, point towards inflammation and mitochondrial membrane remodeling (alternations in cardiolipin lipids), indicating broader impacts on physiological functions. Ether glycerophospholipids, such as lysophosphatidylethanolamine and phosphatidylethanolamine, linked to peroxisomes and the endoplasmic reticulum, underscore their potential antioxidative role in response to oxidative stress. The study shows the significance of incorporating life cycle events into ecotoxicological assessments to comprehensively understand pesticide impacts on organisms. The integration of lipidomics into environmental risk assessments offers a more informed approach to pesticide regulation and environmental stewardship.
AB - This study investigated how the insecticide teflubenzuron disrupts lipid metabolism in the springtail Folsomia candida, revealing significant alterations in lipid profiles. F. candida was exposed to sub-lethal concentrations of teflubenzuron (0, 0.006, 0.014, 0.035 mg a.s. kg−1 soil dry weight). Untargeted lipidomics was used to study the dynamic changes in lipid profiles in the springtail over exposure intervals of 2, 7, and 14 days exposure intervals. Teflubenzuron induced shifts in lipid profiles, affecting lipid pathways crucial for energy storage, membrane integrity, and signaling, which are essential for survival, reproduction, and stress responses in this springtail. Diacylglycerols (DG) and Triacylglycerols (TG), which play crucial roles in energy storage and lipid-mediated signaling, were substantially affected by teflubenzuron. Decreased levels of DG and TG suggest a shift in priorities from reproduction to maintenance functions, implying disruptions in cholesterol homeostasis and vitellogenesis in response to teflubenzuron exposure. Furthermore, increased levels of fatty acids and N-acylethanolamines in response to teflubenzuron exposure indicated increased energy production and potential oxidative stress, highlighting the springtails' response to pesticide exposure. Certain lipid alterations (N-palmitoylethanolamine (NAE 16:0) and N-stearoylethanolamine (NAE 18:0)), known for their anti-inflammatory properties, point towards inflammation and mitochondrial membrane remodeling (alternations in cardiolipin lipids), indicating broader impacts on physiological functions. Ether glycerophospholipids, such as lysophosphatidylethanolamine and phosphatidylethanolamine, linked to peroxisomes and the endoplasmic reticulum, underscore their potential antioxidative role in response to oxidative stress. The study shows the significance of incorporating life cycle events into ecotoxicological assessments to comprehensively understand pesticide impacts on organisms. The integration of lipidomics into environmental risk assessments offers a more informed approach to pesticide regulation and environmental stewardship.
KW - Energy storage
KW - Folsomia candida
KW - Insect growth regulators
KW - Life cycle event
KW - Lipidomics
KW - Oxidative stress
KW - Sub-lethal effects
UR - http://www.scopus.com/inward/record.url?scp=105002787034&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=105002787034&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2025.179394
DO - 10.1016/j.scitotenv.2025.179394
M3 - Article
AN - SCOPUS:105002787034
SN - 0048-9697
VL - 978
SP - 1
EP - 15
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 179394
ER -