TY - JOUR
T1 - Temperature dependence of clumped isotopes (∆47) in aragonite
AU - de Winter, Niels Jonathan
AU - Witbaard, Rob
AU - Kocken, Ilja Japhir
AU - Müller, Inigo A
AU - Guo, Jingjing
AU - Goudsmit, Barbara
AU - Ziegler, Martin
PY - 2022/8/25
Y1 - 2022/8/25
N2 - Clumped isotope thermometry can independently constrain the formation temperatures of carbonates, but a lack of precisely temperature-controlled calibration samples limits its application on aragonites. To address this issue, we present clumped isotope compositions of aragonitic bivalve shells grown under highly controlled temperatures (1‒18°C), which we combine with clumped isotope data from natural and synthetic aragonites from a wide range of temperatures (1‒850°C). We observe no discernible offset in clumped isotope values between aragonitic foraminifera, mollusks, and abiogenic aragonites or between aragonites and calcites, eliminating the need for a mineral-specific calibration or acid fractionation factor. However, due to non-linear behavior of the clumped isotope thermometer, including high-temperature (>100°C) datapoints in linear clumped isotope calibrations causes them to underestimate temperatures of cold (1‒18°C) carbonates by 2.7 ± 2.0°C (95% confidence level). Therefore, clumped isotope-based paleoclimate reconstructions should be calibrated using samples with well constrained formation temperatures close to those of the samples.
AB - Clumped isotope thermometry can independently constrain the formation temperatures of carbonates, but a lack of precisely temperature-controlled calibration samples limits its application on aragonites. To address this issue, we present clumped isotope compositions of aragonitic bivalve shells grown under highly controlled temperatures (1‒18°C), which we combine with clumped isotope data from natural and synthetic aragonites from a wide range of temperatures (1‒850°C). We observe no discernible offset in clumped isotope values between aragonitic foraminifera, mollusks, and abiogenic aragonites or between aragonites and calcites, eliminating the need for a mineral-specific calibration or acid fractionation factor. However, due to non-linear behavior of the clumped isotope thermometer, including high-temperature (>100°C) datapoints in linear clumped isotope calibrations causes them to underestimate temperatures of cold (1‒18°C) carbonates by 2.7 ± 2.0°C (95% confidence level). Therefore, clumped isotope-based paleoclimate reconstructions should be calibrated using samples with well constrained formation temperatures close to those of the samples.
U2 - 10.1002/essoar.10511492.2
DO - 10.1002/essoar.10511492.2
M3 - Article
SN - 2333-5084
JO - Earth and Space Science Open Archive
JF - Earth and Space Science Open Archive
ER -