Tesla: An application for real-time data analysis in High Energy Physics

R. Aaij, S. Amato, L. Anderlini, S. Benson*, M. Cattaneo, M. Clemencic, B. Couturier, M. Frank, V. V. Gligorov, T. Head, C. Jones, I. Komarov, O. Lupton, R. Matev, G. Raven, B. Sciascia, T. Skwarnicki, P. Spradlin, S. Stahl, B. StoraciM. Vesterinen

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Upgrades to the LHCb computing infrastructure in the first long shutdown of the LHC have allowed for high quality decay information to be calculated by the software trigger making a separate offline event reconstruction unnecessary. Furthermore, the storage space of the triggered candidate is an order of magnitude smaller than the entire raw event that would otherwise need to be persisted. Tesla is an application designed to process the information calculated by the trigger, with the resulting output used to directly perform physics measurements.

Original languageEnglish
Pages (from-to)35-42
Number of pages8
JournalComputer Physics Communications
Volume208
DOIs
Publication statusPublished - Nov 2016

Keywords

  • Data acquisition
  • Data analysis
  • Particle physics

Fingerprint

Dive into the research topics of 'Tesla: An application for real-time data analysis in High Energy Physics'. Together they form a unique fingerprint.

Cite this