TY - JOUR
T1 - The effect of seasonal acclimatization on whole body heat loss response during exercise in a hot humid environment with different air velocity
AU - Lei, Tze Huan
AU - Fujiwara, Masashi
AU - Gerrett, Nicola
AU - Amano, Tatsuro
AU - Mundel, Toby
AU - Inoue, Yoshimitsu
AU - Okushima, Dai
AU - Nishiyasu, Takeshi
AU - Kondo, Narihiko
N1 - Funding Information:
This study was supported by a Grant in Aid for Scientific Research (P18793) from the Japan Society for the Promotion of Science from the Ministry of Education.
Publisher Copyright:
Copyright © 2021 the American Physiological Society.
PY - 2021/8
Y1 - 2021/8
N2 - Seasonal acclimatization from winter to summer is known to enhance thermoeffector responses in hot-dry environments during exercise whereas its impact on sweat evaporation and core temperature (Tcore) responses in hot-humid environments remains unknown. We, therefore, sought to determine whether seasonal acclimatization is able to modulate whole body sweat rate (WBSR), evaporated sweat rate, sweating efficiency, and thermoregulatory function during cycling exercise in a hot-humid environment (32 °C, 75% RH). We also determined whether the increase in air velocity could enhance evaporated sweat rate and sweating efficiency before and after seasonal acclimatization. Twelve males cycled for 1 h at 40% V-O2max in winter (preacclimatization) and repeated the trial again in summer (after acclimatization). For the last 20 min of cycling at a steady-state of Tcore, air velocity increased from 0.2 (0.04) m/s to 1.1 (0.02) m/s by using an electric fan located in front of the participant. Seasonal acclimatization enhanced WBSR, unevaporated sweat rate, local sweat rate and mean skin temperature compared with preacclimatization state (all P < 0.05) whereas sweating efficiency was lower (P < 0.01) until 55 min of exercise. Tcore and evaporated sweat rate were unaltered by acclimatization status (all P > 0.70). In conclusion, seasonal acclimatization enhances thermoeffector responses but does not attenuate Tcore during exercise in a hot-humid environment. Furthermore, increasing air velocity enhances evaporated sweat rate and sweating efficiency irrespective of acclimated state. NEW & NOTEWORTHY Seasonal acclimatization to humid heat enhances eccrine sweat gland function and thus results in a higher local and whole body sweat rate but does not attenuate Tcore during exercise in a hot-humid environment. Sweating efficiency is lower after seasonal acclimatization to humid heat compared with preacclimatization with and without the increase of air velocity. However, having a lower sweating efficiency does not mitigate the Tcore response during exercise in a hot-humid environment.
AB - Seasonal acclimatization from winter to summer is known to enhance thermoeffector responses in hot-dry environments during exercise whereas its impact on sweat evaporation and core temperature (Tcore) responses in hot-humid environments remains unknown. We, therefore, sought to determine whether seasonal acclimatization is able to modulate whole body sweat rate (WBSR), evaporated sweat rate, sweating efficiency, and thermoregulatory function during cycling exercise in a hot-humid environment (32 °C, 75% RH). We also determined whether the increase in air velocity could enhance evaporated sweat rate and sweating efficiency before and after seasonal acclimatization. Twelve males cycled for 1 h at 40% V-O2max in winter (preacclimatization) and repeated the trial again in summer (after acclimatization). For the last 20 min of cycling at a steady-state of Tcore, air velocity increased from 0.2 (0.04) m/s to 1.1 (0.02) m/s by using an electric fan located in front of the participant. Seasonal acclimatization enhanced WBSR, unevaporated sweat rate, local sweat rate and mean skin temperature compared with preacclimatization state (all P < 0.05) whereas sweating efficiency was lower (P < 0.01) until 55 min of exercise. Tcore and evaporated sweat rate were unaltered by acclimatization status (all P > 0.70). In conclusion, seasonal acclimatization enhances thermoeffector responses but does not attenuate Tcore during exercise in a hot-humid environment. Furthermore, increasing air velocity enhances evaporated sweat rate and sweating efficiency irrespective of acclimated state. NEW & NOTEWORTHY Seasonal acclimatization to humid heat enhances eccrine sweat gland function and thus results in a higher local and whole body sweat rate but does not attenuate Tcore during exercise in a hot-humid environment. Sweating efficiency is lower after seasonal acclimatization to humid heat compared with preacclimatization with and without the increase of air velocity. However, having a lower sweating efficiency does not mitigate the Tcore response during exercise in a hot-humid environment.
UR - http://www.scopus.com/inward/record.url?scp=85113589131&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85113589131&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.00837.2020
DO - 10.1152/japplphysiol.00837.2020
M3 - Article
C2 - 34043472
AN - SCOPUS:85113589131
SN - 8750-7587
VL - 131
SP - 520
EP - 531
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 2
ER -