The environment of early Mars and the missing carbonates

David C. Fernández-Remolar*, Mónica Sánchez-Román, Andrew C. Hill, David Gómez-Ortíz, Olga Prieto Ballesteros, Christopher S. Romanek, Ricardo Amils

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review


A model is presented in which the aqueous conditions needed to generate phyllosilicate minerals in the absence of carbonates found in the ancient Noachian crust are maintained by an early CO2-rich atmosphere, that, together with iron (II) oxidation, would prevent carbonate formation at the surface. After cessation of the internal magnetic dynamo, a CO2-rich primordial atmosphere was stripped by interactions with the solar wind and surface conditions evolved from humid to arid, with ground waters partially dissolving subsurface carbonate and sulfide minerals to produce acid-sulfate evaporitic deposits in areas with upwelling ground water. In a subsequent geochemical state (Late Noachian to Hesperian), surface and subsurface acidic solutions were neutralized in the subsurface through interaction with basaltic crust, allowing the precipitation of secondary carbonates. This model suggests that, in the early Noachian, the surface waters of Mars maintained acidity because of a drop in temperature. This would have favored increased dissolution of CO2 and a reduction in atmospheric pressure. In this scenario, physicochemical conditions precluded the formation of surface carbonates, but induced the precipitation of carbonates in the subsurface.

Original languageEnglish
Pages (from-to)1447-1469
Number of pages23
JournalMeteoritics and Planetary Science
Issue number10
Publication statusPublished - Oct 2011


Dive into the research topics of 'The environment of early Mars and the missing carbonates'. Together they form a unique fingerprint.

Cite this