Abstract
In this study we investigate the relative importance of changes in land use and climate on suspended sediment yield (SY) on millennial timescales in the Meuse basin. We use a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) to simulate SY in three time-periods: 4000-3000 BP (minimal anthropogenic influence); 1000-2000 AD (includes land use and climate change); and the 21st Century. Changes in climate are based on climate model output (ECBilt-CLIO-VECODE). For the 21st Century the model is forced according to two emission scenarios of the Intergovernmental Panel on Climate Change (IPCC), namely the SRES scenarios A2 and B1. These scenarios lie towards the higher and lower end of the full IPCC scenario range respectively. For 4000-3000 BP the basin is assumed to be almost fully forested; for 1000-2000 AD land use is reconstructed using CORINE data, historical sources, and land use modelling; and for the 21st Century land use is based on the European land use change project EURURALIS. Whilst rainfall erosivity increases by only 3% between 4000-3000 BP and 1000-2000 AD, SY increases from ca. 92 000 Mg a
Original language | English |
---|---|
Pages (from-to) | 389-400 |
Journal | Geomorphology |
Volume | 103 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2009 |