The impact of metabolism on stabe isotope dynamics: a theoretical framework.

L Pecquerie, R.M. Nisbet, R. Fablet, A. Lorrain, S.A.L.M. Kooijman

    Research output: Contribution to JournalArticleAcademicpeer-review


    Stable isotope analysis is a powerful tool used for reconstructing individual life histories, identifying food-web structures and tracking flow of elemental matter through ecosystems. The mechanisms determining isotopic incorporation rates and discrimination factors are, however, poorly understood which hinders a reliable interpretation of field data when no experimental data are available. Here, we extend dynamic energy budget (DEB) theory with a limited set of new assumptions and rules in order to study the impact of metabolism on stable isotope dynamics in a mechanistic way. We calculate fluxes of stable isotopes within an organism by following fluxes of molecules involved in a limited number of macrochemical reactions: Assimilation, growth but also structure turnover that is here explicitly treated. Two mechanisms are involved in the discrimination of isotopes: (i) selection of molecules occurs at the partitioning of assimilation, growth and turnover into anabolic and catabolic sub-fluxes and (ii) reshuffling of atoms occurs during transformations. Such a framework allows for isotopic routing which is known as a key, but poorly studied, mechanism. As DEB theory specifies the impact of environmental conditions and individual state on molecule fluxes, we discuss how scenario analysis within this framework could help reveal common mechanisms across taxa. © 2010 The Royal Society.
    Original languageEnglish
    Pages (from-to)3455-3468
    JournalPhilosophical Transactions of the Royal Society B. Biological Sciences
    Publication statusPublished - 2010


    Dive into the research topics of 'The impact of metabolism on stabe isotope dynamics: a theoretical framework.'. Together they form a unique fingerprint.

    Cite this