TY - JOUR
T1 - The mechanical effect of rat flexor carpi ulnaris muscle after tendon transfer: does it generate a wrist extension moment?
AU - Maas, H.
AU - Huijing, P.A.J.B.M.
PY - 2012
Y1 - 2012
N2 - The mechanical effect of a muscle following agonist-to-antagonist tendon transfers does not always meet the surgeon's expectations. We tested the hypothesis that after flexor carpi ulnaris (FCU) to extensor carpi radialis (ECR) tendon transfer in the rat, the direction (flexion or extension) of the muscle's joint moment is dependent on joint angle. Five weeks after recovery from surgery (tendon transfer group) and in a control group, wrist angle-moment characteristics of selectively activated FCU muscle were assessed for progressive stages of dissection: 1) with minimally disrupted connective tissues, 2) after distal tenotomy, and 3) after maximal tendon and muscle belly dissection, but leaving blood supply and innervations intact. In addition, force transmission from active FCU onto the distal tendon of passive palmaris longus (PL) muscle (a wrist flexor) was assessed. Excitation of control FCU yielded flexion moments at all wrist angles tested. Tenotomy decreased peak FCU moment substantially (by 93%) but not fully. Only after maximal dissection, FCU wrist moment became negligible. The mechanical effect of transferred FCU was bidirectional: extension moments in flexed wrist positions and flexion moments in extended wrist positions. Tenotomy decreased peak extension moment (by 33%) and increased peak flexion moment of transferred FCU (by 41%). Following subsequent maximal FCU dissection, FCU moments decreased to near zero at all wrist angles tested. We confirmed that, after transfer of FCU towards a wrist extensor insertion, force can be transmitted from active FCU to the distal tendon of passive PL. We conclude that mechanical effects of a muscle after tendon transfer to an antagonistic site can be quite different from those predicted based solely on the sign of the new moment arm at the joint. Copyright © 2012 the American Physiological Society.
AB - The mechanical effect of a muscle following agonist-to-antagonist tendon transfers does not always meet the surgeon's expectations. We tested the hypothesis that after flexor carpi ulnaris (FCU) to extensor carpi radialis (ECR) tendon transfer in the rat, the direction (flexion or extension) of the muscle's joint moment is dependent on joint angle. Five weeks after recovery from surgery (tendon transfer group) and in a control group, wrist angle-moment characteristics of selectively activated FCU muscle were assessed for progressive stages of dissection: 1) with minimally disrupted connective tissues, 2) after distal tenotomy, and 3) after maximal tendon and muscle belly dissection, but leaving blood supply and innervations intact. In addition, force transmission from active FCU onto the distal tendon of passive palmaris longus (PL) muscle (a wrist flexor) was assessed. Excitation of control FCU yielded flexion moments at all wrist angles tested. Tenotomy decreased peak FCU moment substantially (by 93%) but not fully. Only after maximal dissection, FCU wrist moment became negligible. The mechanical effect of transferred FCU was bidirectional: extension moments in flexed wrist positions and flexion moments in extended wrist positions. Tenotomy decreased peak extension moment (by 33%) and increased peak flexion moment of transferred FCU (by 41%). Following subsequent maximal FCU dissection, FCU moments decreased to near zero at all wrist angles tested. We confirmed that, after transfer of FCU towards a wrist extensor insertion, force can be transmitted from active FCU to the distal tendon of passive PL. We conclude that mechanical effects of a muscle after tendon transfer to an antagonistic site can be quite different from those predicted based solely on the sign of the new moment arm at the joint. Copyright © 2012 the American Physiological Society.
U2 - 10.1152/japplphysiol.01275.2011
DO - 10.1152/japplphysiol.01275.2011
M3 - Article
SN - 8750-7587
VL - 112
SP - 607
EP - 614
JO - Journal of Applied Physiology (1985)
JF - Journal of Applied Physiology (1985)
ER -