The optimal stimulation pattern for skeletal muscle is dependent on muscle length

P. Mela, P.H. Veltink, P.A.J.B.M. Huijing, S. Salmons, J.C. Jarvis

    Research output: Contribution to JournalArticleAcademicpeer-review


    Stimulation patterns can be optimized by maximizing the force-time integral (FTI) per stimulation pulse of the elicited muscle contraction. Such patterns, providing the desired force output with the minimum number of pulses, may reduce muscle fatigue, which has been shown to correlate to the number of pulses delivered. Applications of electrical stimulation to use muscle as a controllable biological actuator may, therefore, be improved. Although muscle operates over a range of lengths, optimized patterns have been determined only at optimal muscle length. In this study, the patterns with up to four pulses that produced the highest isometric FTI were determined at 10 muscle lengths for 11 rabbit tibialis anterior muscles. The interpulse intervals (IPIs) used ranged from 4 to 54 ms. At high muscle length, the optimal stimulation pattern consisted of an initial short IPI (doublet) followed by longer IPIs, in agreement with previous studies. However, at low length, the third pulse still elicited more than linear summation (triplet); furthermore, the relative enhancement of the FTI per pulse was considerably larger at low length than at high length, suggesting that optimal stimulation patterns are length dependent.
    Original languageEnglish
    Pages (from-to)120-130
    JournalIEEE Transactions on Neural Systems and Rehabilitation Engineering
    Issue number2
    Publication statusPublished - 2002


    Dive into the research topics of 'The optimal stimulation pattern for skeletal muscle is dependent on muscle length'. Together they form a unique fingerprint.

    Cite this