The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: Complex dynamics and its implications for data analysis.

M Aguiar, S Ballesteros, B.W. Kooi, N. Stollenwerk

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

In many countries in Asia and South-America dengue fever (DF) and dengue hemorrhagic fever (DHF) has become a substantial public health concern leading to serious social-economic costs. Mathematical models describing the transmission of dengue viruses have focussed on the so-called antibody-dependent enhancement (ADE) effect and temporary cross-immunity trying to explain the irregular behavior of dengue epidemics by analyzing available data. However, no systematic investigation of the possible dynamical structures has been performed so far. Our study focuses on a seasonally forced (non-autonomous) model with temporary cross-immunity and possible secondary infection, motivated by dengue fever epidemiology. The notion of at least two different strains is needed in a minimalistic model to describe differences between primary infections, often asymptomatic, and secondary infection, associated with the severe form of the disease. We extend the previously studied non-seasonal (autonomous) model by adding seasonal forcing, mimicking the vectorial dynamics, and a low import of infected individuals, which is realistic in the dynamics of dengue fever epidemics. A comparative study between three different scenarios (non-seasonal, low seasonal and high seasonal with a low import of infected individuals) is performed. The extended models show complex dynamics and qualitatively a good agreement between empirical DHF monitoring data and the obtained model simulation. We discuss the role of seasonal forcing and the import of infected individuals in such systems, the biological relevance and its implications for the analysis of the available dengue data. At the moment only such minimalistic models have a chance to be qualitatively understood well and eventually tested against existing data. The simplicity of the model (low number of parameters and state variables) offer a promising perspective on parameter values inference from the DHF case notifications. © 2011 Elsevier Ltd.
Original languageEnglish
Pages (from-to)181-196
JournalJournal of Theoretical Biology
Volume289
DOIs
Publication statusPublished - 2011

Fingerprint

Seasonality
dengue
Dengue
Complex Dynamics
Coinfection
imports
Infection
data analysis
Data analysis
Severe Dengue
cross immunity
Immunity
Antibody-Dependent Enhancement
Forcing
Dengue Virus
Asymptomatic Infections
Model
South America
Dengue virus
economic costs

Cite this

@article{b24463ac707642eb843146874cc5ff03,
title = "The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: Complex dynamics and its implications for data analysis.",
abstract = "In many countries in Asia and South-America dengue fever (DF) and dengue hemorrhagic fever (DHF) has become a substantial public health concern leading to serious social-economic costs. Mathematical models describing the transmission of dengue viruses have focussed on the so-called antibody-dependent enhancement (ADE) effect and temporary cross-immunity trying to explain the irregular behavior of dengue epidemics by analyzing available data. However, no systematic investigation of the possible dynamical structures has been performed so far. Our study focuses on a seasonally forced (non-autonomous) model with temporary cross-immunity and possible secondary infection, motivated by dengue fever epidemiology. The notion of at least two different strains is needed in a minimalistic model to describe differences between primary infections, often asymptomatic, and secondary infection, associated with the severe form of the disease. We extend the previously studied non-seasonal (autonomous) model by adding seasonal forcing, mimicking the vectorial dynamics, and a low import of infected individuals, which is realistic in the dynamics of dengue fever epidemics. A comparative study between three different scenarios (non-seasonal, low seasonal and high seasonal with a low import of infected individuals) is performed. The extended models show complex dynamics and qualitatively a good agreement between empirical DHF monitoring data and the obtained model simulation. We discuss the role of seasonal forcing and the import of infected individuals in such systems, the biological relevance and its implications for the analysis of the available dengue data. At the moment only such minimalistic models have a chance to be qualitatively understood well and eventually tested against existing data. The simplicity of the model (low number of parameters and state variables) offer a promising perspective on parameter values inference from the DHF case notifications. {\circledC} 2011 Elsevier Ltd.",
author = "M Aguiar and S Ballesteros and B.W. Kooi and N. Stollenwerk",
year = "2011",
doi = "10.1016/j.jtbi.2011.08.043",
language = "English",
volume = "289",
pages = "181--196",
journal = "Journal of Theoretical Biology",
issn = "0022-5193",
publisher = "Academic Press Inc.",

}

TY - JOUR

T1 - The role of seasonality and import in a minimalistic multi-strain dengue model capturing differences between primary and secondary infections: Complex dynamics and its implications for data analysis.

AU - Aguiar, M

AU - Ballesteros, S

AU - Kooi, B.W.

AU - Stollenwerk, N.

PY - 2011

Y1 - 2011

N2 - In many countries in Asia and South-America dengue fever (DF) and dengue hemorrhagic fever (DHF) has become a substantial public health concern leading to serious social-economic costs. Mathematical models describing the transmission of dengue viruses have focussed on the so-called antibody-dependent enhancement (ADE) effect and temporary cross-immunity trying to explain the irregular behavior of dengue epidemics by analyzing available data. However, no systematic investigation of the possible dynamical structures has been performed so far. Our study focuses on a seasonally forced (non-autonomous) model with temporary cross-immunity and possible secondary infection, motivated by dengue fever epidemiology. The notion of at least two different strains is needed in a minimalistic model to describe differences between primary infections, often asymptomatic, and secondary infection, associated with the severe form of the disease. We extend the previously studied non-seasonal (autonomous) model by adding seasonal forcing, mimicking the vectorial dynamics, and a low import of infected individuals, which is realistic in the dynamics of dengue fever epidemics. A comparative study between three different scenarios (non-seasonal, low seasonal and high seasonal with a low import of infected individuals) is performed. The extended models show complex dynamics and qualitatively a good agreement between empirical DHF monitoring data and the obtained model simulation. We discuss the role of seasonal forcing and the import of infected individuals in such systems, the biological relevance and its implications for the analysis of the available dengue data. At the moment only such minimalistic models have a chance to be qualitatively understood well and eventually tested against existing data. The simplicity of the model (low number of parameters and state variables) offer a promising perspective on parameter values inference from the DHF case notifications. © 2011 Elsevier Ltd.

AB - In many countries in Asia and South-America dengue fever (DF) and dengue hemorrhagic fever (DHF) has become a substantial public health concern leading to serious social-economic costs. Mathematical models describing the transmission of dengue viruses have focussed on the so-called antibody-dependent enhancement (ADE) effect and temporary cross-immunity trying to explain the irregular behavior of dengue epidemics by analyzing available data. However, no systematic investigation of the possible dynamical structures has been performed so far. Our study focuses on a seasonally forced (non-autonomous) model with temporary cross-immunity and possible secondary infection, motivated by dengue fever epidemiology. The notion of at least two different strains is needed in a minimalistic model to describe differences between primary infections, often asymptomatic, and secondary infection, associated with the severe form of the disease. We extend the previously studied non-seasonal (autonomous) model by adding seasonal forcing, mimicking the vectorial dynamics, and a low import of infected individuals, which is realistic in the dynamics of dengue fever epidemics. A comparative study between three different scenarios (non-seasonal, low seasonal and high seasonal with a low import of infected individuals) is performed. The extended models show complex dynamics and qualitatively a good agreement between empirical DHF monitoring data and the obtained model simulation. We discuss the role of seasonal forcing and the import of infected individuals in such systems, the biological relevance and its implications for the analysis of the available dengue data. At the moment only such minimalistic models have a chance to be qualitatively understood well and eventually tested against existing data. The simplicity of the model (low number of parameters and state variables) offer a promising perspective on parameter values inference from the DHF case notifications. © 2011 Elsevier Ltd.

U2 - 10.1016/j.jtbi.2011.08.043

DO - 10.1016/j.jtbi.2011.08.043

M3 - Article

VL - 289

SP - 181

EP - 196

JO - Journal of Theoretical Biology

JF - Journal of Theoretical Biology

SN - 0022-5193

ER -