The uranyl ion revisited: the electric field gradient at U as a probe of environmental effects

P. Belanzoni, E.J. Baerends, E van Lenthe

    Research output: Contribution to JournalArticleAcademicpeer-review

    Abstract

    The experimental electric field gradient (EFG) at the U nucleus in uranyl is positive. It has been pointed out by Pyykkö that this could be a signature of a hole in the 6p shell induced by the strong bonding to the axial O atoms. We have revisited this issue with the help of relativistic density functional calculations, including accurate ZORA-4 calculations of the EFG. We confirm the existence of a 6p hole, with a positive contribution to the EFG, but we still find the EFG in the free uranyl ion to be negative due to the non-spherical electron distribution in the valence 5f shell caused by the bonding to the oxygens. A positive EFG only results in our calculations from the effect of the crystal environment of the uranyl ion, i.e. the coordination of three nitrate groups in the equatorial plane. Again the extended nature of 6p plays a key role, with an important positive contribution to the EFG coming from 6p tails in the high-lying electron pair orbitals of the closed shell nitrate ligands due to the orthogonality requirement. A further contribution comes from electron donation by the nitrate groups into the U 5f
    Original languageEnglish
    Pages (from-to)775-787
    JournalMolecular Physics
    Volume103
    Issue number6-8
    DOIs
    Publication statusPublished - 2005

    Fingerprint

    Dive into the research topics of 'The uranyl ion revisited: the electric field gradient at U as a probe of environmental effects'. Together they form a unique fingerprint.

    Cite this