TY - JOUR
T1 - Theory of the n = 2 levels in muonic helium-3 ions
AU - Franke, Beatrice
AU - Krauth, Julian J.
AU - Antognini, Aldo
AU - Diepold, Marc
AU - Kottmann, Franz
AU - Pohl, Randolf
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Abstract: The present knowledge of Lamb shift, fine-, and hyperfine structure of the 2S and 2P states in muonic helium-3 ions is reviewed in anticipation of the results of a first measurement of several 2S → 2P transition frequencies in the muonic helium-3 ion, μ3He+. This ion is the bound state of a single negative muon μ- and a bare helium-3 nucleus (helion), 3He++.A term-by-term comparison of all available sources, including new, updated, and so far unpublished calculations, reveals reliable values and uncertainties of the QED and nuclear structure-dependent contributions to the Lamb shift and the hyperfine splitting. These values are essential for the determination of the helion rms charge radius and the nuclear structure effects to the hyperfine splitting in μ3He+. With this review we continue our series of theory summaries in light muonic atoms [see A. Antognini et al., Ann. Phys. 331, 127 (2013); J.J. Krauth et al., Ann. Phys. 366, 168 (2016); and M. Diepold et al. arXiv:1606.05231 (2016)]. Graphical abstract: [Figure not available: see fulltext.].
AB - Abstract: The present knowledge of Lamb shift, fine-, and hyperfine structure of the 2S and 2P states in muonic helium-3 ions is reviewed in anticipation of the results of a first measurement of several 2S → 2P transition frequencies in the muonic helium-3 ion, μ3He+. This ion is the bound state of a single negative muon μ- and a bare helium-3 nucleus (helion), 3He++.A term-by-term comparison of all available sources, including new, updated, and so far unpublished calculations, reveals reliable values and uncertainties of the QED and nuclear structure-dependent contributions to the Lamb shift and the hyperfine splitting. These values are essential for the determination of the helion rms charge radius and the nuclear structure effects to the hyperfine splitting in μ3He+. With this review we continue our series of theory summaries in light muonic atoms [see A. Antognini et al., Ann. Phys. 331, 127 (2013); J.J. Krauth et al., Ann. Phys. 366, 168 (2016); and M. Diepold et al. arXiv:1606.05231 (2016)]. Graphical abstract: [Figure not available: see fulltext.].
KW - Atomic Physics
UR - http://www.scopus.com/inward/record.url?scp=85040459931&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85040459931&partnerID=8YFLogxK
U2 - 10.1140/epjd/e2017-80296-1
DO - 10.1140/epjd/e2017-80296-1
M3 - Review article
AN - SCOPUS:85040459931
VL - 71
JO - European Physical Journal D. Atomic, Molecular, Optical and Plasma Physics
JF - European Physical Journal D. Atomic, Molecular, Optical and Plasma Physics
SN - 1434-6060
IS - 12
M1 - 341
ER -