Time-dependent analysis of B0 → KS0 π-π+γ decays and studies of the K+π-π+ system in B+ →k+π-π+γ decays

P. del Amo Sanchez, J. P. Lees, V. Poireau, V. Tisserand, E. Grauges, A. Palano, G. Eigen, B. Stugu, D. N. Brown, L. T. Kerth, Yu G. Kolomensky, M. J. Lee, M.G. Lynch, H. Koch, T. Schroeder, C. Hearty, T. S. Mattison, J. A. McKenna, R. Y. So, A. KhanV. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, V. B. Golubev, E. A. Kravchenko, A. P. Onuchin, S. I. Serednyakov, Yu I. Skovpen, E. P. Solodov, K. Yu Todyshev, A. J. Lankford, J. W. Gary, O. Long, M. Franco Sevilla, T. M. Hong, D. Kovalskyi, J. D. Richman, C. A. West, A. M. Eisner, W. S. Lockman, W. Panduro Vazquez, B. A. Schumm, A. Seiden, D. S. Chao, C. H. Cheng, B. Echenard, K. T. Flood, D. G. Hitlin, J. Kim, G. Raven, BABAR Collaboration

Research output: Contribution to JournalArticleAcademicpeer-review


We measure the time-dependent CP asymmetry in the radiative-penguin decay B0→KS0π-π+γ, using a sample of 471×106 (4S)→BB-events recorded with the BABAR detector at the PEP-II e+e- storage ring at SLAC. Using events with mKππ<1.8 GeV/c2, we measure the branching fractions of B+→K+π-π+γ and B0→K0π-π+γ, the branching fractions of the kaonic resonances decaying to K+π-π+, as well as the overall branching fractions of the B+→ρ0K+γ, B+→K∗0π+γ and S-wave B+→(Kπ)0∗0π+γ components. For events from the ρ mass band, we measure the CP-violating parameters SKS0π+π-γ=0.14±0.25±0.03 and CKS0π+π-γ=-0.39±0.20-0.02+0.03, where the first uncertainties are statistical and the second are systematic. We extract from this measurement the time-dependent CP asymmetry related to the CP eigenstate ρ0KS0 and obtain SKS0ργ=-0.18±0.32-0.05+0.06, which provides information on the photon polarization in the underlying b→sγ transition.

Original languageEnglish
Article number052013
JournalPhysical Review D
Issue number5
Publication statusPublished - 29 Mar 2016


Dive into the research topics of 'Time-dependent analysis of B0 → KS0 π-π+γ decays and studies of the K+π-π+ system in B+ →k+π-π+γ decays'. Together they form a unique fingerprint.

Cite this