Toward an operational anthropogenic CO2 emissions monitoring and verification support capacity

G. Janssens-Maenhout*, B. Pinty, M. Dowell, H. Zunker, E. Andersson, G. Balsamo, J. L. Bézy, T. Brunhes, H. Bösch, B. Bojkov, D. Brunner, M. Buchwitz, D. Crisp, P. Ciais, P. Counet, D. Dee, H. Denier van der Gon, H. Dolman, M. R. Drinkwater, O. DubovikR. Engelen, T. Fehr, V. Fernandez, M. Heimann, K. Holmlund, S. Houweling, R. Husband, O. Juvyns, A. Kentarchos, J. Landgraf, R. Lang, A. Löscher, J. Marshall, Y. Meijer, M. Nakajima, P. I. Palmer, P. Peylin, P. Rayner, M. Scholze, B. Sierk, J. Tamminen, P. Veefkind

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

98 Downloads (Pure)

Abstract

Under the Paris Agreement (PA), progress of emission reduction efforts is tracked on the basis of regular updates to national greenhouse gas (GHG) inventories, referred to as bottom-up estimates. However, only top-down atmospheric measurements can provide observation-based evidence of emission trends. Today, there is no internationally agreed, operational capacity to monitor anthropogenic GHG emission trends using atmospheric measurements to complement national bottom-up inventories. The European Commission (EC), the European Space Agency, the European Centre for Medium-Range Weather Forecasts, the European Organisation for the Exploitation of Meteorological Satellites, and international experts are joining forces to develop such an operational capacity for monitoring anthropogenic CO2 emissions as a new CO2 service under the EC's Copernicus program. Design studies have been used to translate identified needs into defined requirements and functionalities of this anthropogenic CO2 emissions Monitoring and Verification Support (CO2MVS) capacity. It adopts a holistic view and includes components such as atmospheric spaceborne and in situ measurements, bottom-up CO2 emission maps, improved modeling of the carbon cycle, an operational data-assimilation system integrating top-down and bottom-up information, and a policy-relevant decision support tool. The CO2MVS capacity with operational capabilities by 2026 is expected to visualize regular updates of global CO2 emissions, likely at 0.05° x 0.05°. This will complement the PA's enhanced transparency framework, providing actionable information on anthropogenic CO2 emissions that are the main driver of climate change. This information will be available to all stakeholders, including governments and citizens, allowing them to reflect on trends and effectiveness of reduction measures. The new EC gave the green light to pass the CO2MVS from exploratory to implementing phase.

Original languageEnglish
Pages (from-to)E1439-E1451
Number of pages13
JournalBulletin of the American Meteorological Society
Volume101
Issue number8
DOIs
Publication statusPublished - 1 Aug 2020

Funding

Acknowledgments. Studies are conducted in preparation for a European capacity to monitor CO2 anthropogenic emissions under the Coordination and Support Action H2020-EO-3-2017 with project CHE (CO2 Human Emissions) and under the Research and Innovation Action H2020-SC5-4-2017 with project VERIFY (Observation-based monitoring and verification of greenhouse gases). The CHE and VERIFY projects have received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreements 776186 and 776810, respectively.

FundersFunder number
Division of Chemistry
Horizon 2020 Framework Programme
Horizon 2020776186, 776810

    Fingerprint

    Dive into the research topics of 'Toward an operational anthropogenic CO2 emissions monitoring and verification support capacity'. Together they form a unique fingerprint.

    Cite this