Abstract
Critical infrastructure (CI) are at risk of failure due to the increased frequency and magnitude of climate extremes related to climate change. It is thus essential to include them in a risk management framework to identify risk hotspots, develop risk management policies and support adaptation strategies to enhance their resilience. However, the lack of information on the exposure of CI to natural hazards prevents their incorporation in large-scale risk assessments. This study sets out to improve the representation of CI for risk assessment studies by building a neural network model to detect CI assets from optical remote sensing imagery. We present a pipeline that extracts CI from OpenStreetMap, processes the imagery and assets’ masks, and trains a Mask R-CNN model that allows for instance segmentation of CI at the asset level. This study provides an overview of the pipeline and tests it with the detection of electrical substations assets in the Netherlands. Several experiments are presented for different under-sampling percentages of the majority class (25%, 50% and 100%) and hyperparameters settings (batch size and learning rate). The highest scoring experiment achieved an Average Precision at an Intersection over Union of 50% of 30.93 and a tile F-score of 89.88%. This allows us to confirm the feasibility of the method and invite disaster risk researchers to use this pipeline for other infrastructure types. We conclude by exploring the different avenues to improve the pipeline by addressing the class imbalance, Transfer Learning and Explainable Artificial Intelligence.
Original language | English |
---|---|
Article number | 035009 |
Pages (from-to) | 1-16 |
Number of pages | 16 |
Journal | Environmental Research: Infrastructure and Sustainability |
Volume | 4 |
Issue number | 3 |
Early online date | 22 Aug 2024 |
DOIs | |
Publication status | Published - Sept 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Author(s). Published by IOP Publishing Ltd.
Funding
This research is carried out in the CoCliCo project. This project has received funding from the European Union\u2019s Horizon 2020 research and innovation program (Grant Agreement No. 101003598). E E K and P J W were additionally funded by the European Union\u2019s Horizon 2020 MIRACA project; Grant Agreement No. 101093854. E E K was further supported by the Netherlands Organisation for Scientific Research (NWO; Grant Nos. VI.Veni.194.033). Furthermore, we would like to acknowledge the Netherlands Space Office (NSO) for providing the satellite imagery, IT voor Onderzoek of VU Amsterdam for providing the computational cluster required for the study, and Maria Luisa Colmenares for her valuable help during the labelling procedure.
Funders | Funder number |
---|---|
Netherlands Space Office | |
Horizon 2020 Framework Programme | 101093854, 101003598 |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | VI.Veni.194.033 |
Keywords
- CNN
- critical infrastructure
- instance segmentation
- machine learning
- remote sensing