Tracing the molecular basis of transcriptional dynamics in noisy data by using an experiment-based mathematical model.

E.N. Rybakova, A. Tomaszewska, A. van Mourik, J. Blom, H.V. Westerhoff, C. Carlberg, F.J. Bruggeman

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Changes in transcription factor levels, epigenetic status, splicing kinetics and mRNA degradation can each contribute to changes in the mRNA dynamics of a gene. We present a novel method to identify which of these processes is changed in cells in response to external signals or as a result of a diseased state. The method employs a mathematical model, for which the kinetics of gene regulation, splicing, elongation and mRNA degradation were estimated from experimental data of transcriptional dynamics. The time-dependent dynamics of several species of adipose differentiation-related protein (ADRP) mRNA were measured in response to ligand activation of the transcription factor peroxisome proliferator-activated receptor δ (PPARδ). We validated the method by monitoring the mRNA dynamics upon gene activation in the presence of a splicing inhibitor. Our mathematical model correctly identifies splicing as the inhibitor target, despite the noise in the data.
Original languageEnglish
Article number1
Pages (from-to)153-161
JournalNucleic Acids Research
Issue number43
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Tracing the molecular basis of transcriptional dynamics in noisy data by using an experiment-based mathematical model.'. Together they form a unique fingerprint.

Cite this