Tracking patterns in self-regulated learning using students’ self-reports and online trace data

Nicolette Van Halem*, Chris Van Klaveren, Hendrik Drachsler, Marcel Schmitz, Ilja Cornelisz

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

84 Downloads (Pure)


For decades, self-report instruments – which rely heavily on students’ perceptions and beliefs – have been the dominant way of measuring motivation and strategy use. Eventbased measures based on online trace data arguably has the potential to remove analytical restrictions of self-report measures. The purpose of this study is therefore to triangulate constructs suggested in theory and measured using self-reported data with revealed online traces of learning behaviour. The results show that online trace data of learning behaviour are complementary to self-reports, as they explained a unique proportion of variance in student academic performance. The results also reveal that self-reports explain more variance in online learning behaviour of prior weeks than variance in learning behaviour in succeeding weeks. Student motivation is, however, to a lesser extent captured with online trace data, likely because of its covert nature. In that respect, it is of importance to recognize the crucial role of self-reports in capturing student learning holistically. This manuscript is ‘frontline’ in the sense that event-based measurement methodologies with online trace data are relatively unexplored. The comparison with self-report data made in this manuscript sheds new light on the added values of innovative and traditional methods of measuring motivation and strategy use.

Original languageEnglish
Pages (from-to)140-163
Number of pages24
JournalFrontline Learning Research
Issue number3
Publication statusPublished - 30 Mar 2020

Bibliographical note

Special Issue: The Promise and Pitfalls of Self-report data for motivation and strategy use.


  • Event-Based Measures
  • Online Trace Data
  • Self-Regulated Learning
  • Self-Report Measures


Dive into the research topics of 'Tracking patterns in self-regulated learning using students’ self-reports and online trace data'. Together they form a unique fingerprint.

Cite this