Twister tries: Approximate hierarchical agglomerative clustering for average distance in linear time

Research output: Chapter in Book / Report / Conference proceedingConference contributionAcademicpeer-review

Abstract

Many commonly used data-mining techniques utilized across research fields perform poorly when used for large data sets. Sequential agglomerative hierarchical non-overlapping clustering is one technique for which the algorithms' scaling properties prohibit clustering of a large amount of items. Besides the unfavorable time complexity of O(n2), these algorithms have a space complexity of O(n2), which can be reduced to O(n) if the time complexity is allowed to rise to O(n2 log2 n). In this paper, we propose the use of locality-sensitive hashing combined with a novel data structure called twister tries to provide an approximate clustering for average linkage. Our approach requires only linear space. Furthermore, its time complexity is linear in the number of items to be clustered, making it feasible to apply it on a larger scale. We evaluate the approach both analytically and by applying it to several data sets.

Original languageEnglish
Title of host publicationSIGMOD 2015 - Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
PublisherAssociation for Computing Machinery
Pages505-517
Number of pages13
ISBN (Electronic)9781450327589
DOIs
Publication statusPublished - 27 May 2015
Externally publishedYes
EventACM SIGMOD International Conference on Management of Data, SIGMOD 2015 - Melbourne, Australia
Duration: 31 May 20154 Jun 2015

Publication series

NameProceedings of the ACM SIGMOD International Conference on Management of Data
Volume2015-May
ISSN (Print)0730-8078

Conference

ConferenceACM SIGMOD International Conference on Management of Data, SIGMOD 2015
Country/TerritoryAustralia
CityMelbourne
Period31/05/154/06/15

Keywords

  • Average linkage
  • Hierarchical clustering
  • Linear complexity
  • Locality-sensitive hashing

Fingerprint

Dive into the research topics of 'Twister tries: Approximate hierarchical agglomerative clustering for average distance in linear time'. Together they form a unique fingerprint.

Cite this