Abstract
Cross-lingual transfer has become an effective way of transferring knowledge between languages. In this paper, we explore an often overlooked aspect in this domain: the influence of the source language of a language model on language transfer performance. We consider a case where the target language and its script are not part of the pre-trained model. We conduct a series of experiments on monolingual and multilingual models that are pre-trained on different tokenization methods to determine factors that affect cross-lingual transfer to a new language with a unique script. Our findings reveal the importance of the tokenizer as a stronger factor than the shared script, language similarity, and model size.
Original language | Undefined/Unknown |
---|---|
Publication status | Published - 29 Apr 2024 |
Bibliographical note
Paper accepted to NAACL Student Research Workshop (SRW) 2024Keywords
- cs.CL