Unraveling interlimb interactions underlying bimanual coordination

    Research output: Contribution to JournalArticleAcademicpeer-review


    Three sources of interlimb interactions have been postulated to underlie the stability characteristics of bimanual coordination but have never been evaluated in conjunction: integrated timing of feedforward control signals, phase entrainment by contralateral afference, and timing corrections based on the perceived error of relative phase. In this study, the relative contributions of these interactions were discerned through systematic comparisons of five tasks involving rhythmic flexion-extension movements about the wrist, performed bimanually (in-phase and antiphase coordination) or unimanually with or without comparable passive movements of the contralateral hand. The main findings were the following. 1) Contralateral passive movements during unimanual active movements induced phase entrainment to interlimb phasing of either 0° (in-phase) or 180° (antiphase). 2) Entrainment strength increased with the passive movements' amplitude, but was similar for in-phase and antiphase movements. 3) Coordination of unimanual active movements with passive movements of the contralateral hand (kinesthetic tracking) was characterized by similar bilateral EMG activity as observed in active bimanual coordination. 4) During kinesthetic tracking the timing of the movements of the active hand was modulated by afference-based error corrections, which were more pronounced during in-phase coordination. 5) Indications of in-phase coordination being more stable than antiphase coordination were most prominent during active bimanual coordination and marginal during kinesthetic tracking. Together the results indicated that phase entrainment by contralateral afference contributed equally to the stability of in-phase and antiphase coordination, and that differential stability of these patterns depended predominantly on integrated timing of feedforward signals, with only a minor role for afference-based error corrections. Copyright © 2005 The American Physiological Society.
    Original languageEnglish
    Pages (from-to)3112-25
    JournalJournal of Neurophysiology
    Publication statusPublished - 2005


    Dive into the research topics of 'Unraveling interlimb interactions underlying bimanual coordination'. Together they form a unique fingerprint.

    Cite this