Unravelling the Keto-Enol Tautomer Dependent Photochemistry and Degradation Pathways of the Protonated UVA Filter Avobenzone

Jacob A. Berenbeim, Natalie G.K. Wong, Martin C.R. Cockett, Giel Berden, Jos Oomens, Anouk M. Rijs, Caroline E.H. Dessent*

*Corresponding author for this work

Research output: Contribution to JournalArticleAcademicpeer-review

Abstract

Avobenzone (AB) is a widely used UVA filter known to undergo irreversible photodegradation. Here, we investigate the detailed pathways by which AB photodegrades by applying UV laser-interfaced mass spectrometry to protonated AB ions. Gas-phase infrared multiple-photon dissociation (IRMPD) spectra obtained with the free electron laser for infrared experiments, FELIX, (600-1800 cm-1) are also presented to confirm the geometric structures. The UV gas-phase absorption spectrum (2.5-5 eV) of protonated AB contains bands that correspond to selective excitation of either the enol or diketo forms, allowing us to probe the resulting, tautomer-dependent photochemistry. Numerous photofragments (i.e., photodegradants) are directly identified for the first time, with m/z 135 and 161 dominating, and m/z 146 and 177 also appearing prominently. Analysis of the production spectra of these photofragments reveals that that strong enol to keto photoisomerism is occurring, and that protonation significantly disrupts the stability of the enol (UVA active) tautomer. Close comparison of fragment ion yields with the TD-DFT-calculated absorption spectra give detailed information on the location and identity of the dissociative excited state surfaces, and thus provide new insight into the photodegradation pathways of avobenzone, and photoisomerization of the wider class of β-diketone containing molecules.

Original languageEnglish
Pages (from-to)2919-2930
Number of pages12
JournalJournal of Physical Chemistry A
Volume124
Issue number15
DOIs
Publication statusPublished - 16 Apr 2020
Externally publishedYes

Fingerprint

Dive into the research topics of 'Unravelling the Keto-Enol Tautomer Dependent Photochemistry and Degradation Pathways of the Protonated UVA Filter Avobenzone'. Together they form a unique fingerprint.

Cite this